1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
function [lat]=ref_lattice(V,L);
%-*- texinfo -*-
%@deftypefn {Function} ref_lattice
%@verbatim
%REF_LATTICE List of lattice points.
% Usage: lat=ref_lattice(V,L)
%
% Returns the lattice given by av and bv.
% The output format is a 2xMxN matrix, where
% each column is a point on the lattice.
%
% The lattice must be in lower triangular Hermite normal form.
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_lattice.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
a=V(1,1);
b=V(2,2);
s=V(2,1);
M=abs(L/b);
N=abs(L/a);
% Create lattice.
lattice=zeros(2,M*N);
for n=0:N-1
for m=0:M-1
soffset=mod(s*n,b);
% Determine gridpoint in rectangular coordinates.
%lat(:,m+n*M+1) = V(:,1)*n+V(:,2)*m;
lat(1,m+n*M+1) = n*a;
lat(2,m+n*M+1) = m*b+soffset;
end;
end;
% Mod' the lattice.
lat=mod(lat,L);
|