1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
function [c,Ls] = ref_nsdgt(f,g,a,M)
%-*- texinfo -*-
%@deftypefn {Function} ref_nsdgt
%@verbatim
%NSDGT Non-stationary Discrete Gabor transform
% Usage: c=nsdgt(f,g,a,M);
% [c,Ls]=nsdgt(f,g,a,M);
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_nsdgt.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
timepos=cumsum(a)-a(1)+1;
Ls=length(f);
L=nsdgtlength(Ls,a);
N=numel(g);
F=zeros(L,sum(M));
% Construct the analysis operator matrix explicitly
Y = 1;
for n = 1:length(timepos)
X = length(g{n});
win_range = mod(timepos(n)+(-floor(X/2):ceil(X/2)-1)-1,L)+1;
F(win_range,Y) = fftshift(g{n});
for m = 1:M(n)-1
F(win_range,Y+m) = F(win_range,Y).*exp(2*pi*i*m*(-floor(X/2):ceil(X/2)-1)/M(n)).';
end
Y=Y+M(n);
end
cmat=F'*f;
c=mat2cell(cmat,M);
|