File: ref_pbspline.m

package info (click to toggle)
octave-ltfat 2.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,256 kB
  • ctags: 3,340
  • sloc: ansic: 13,629; cpp: 6,764; java: 1,499; objc: 345; makefile: 177; python: 103; sh: 18
file content (182 lines) | stat: -rw-r--r-- 4,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function [out,nlen] = ref_pbspline(splinetype,L,order,a,centering)
%-*- texinfo -*-
%@deftypefn {Function} ref_pbspline
%@verbatim
%PBSPLINE   Periodized B-spline.
%   Usage:   out=pbspline(splinetype,L,order,a);
%            [out,nlen]=pbspline(splinetype,L,order,a);
%
%   Input parameters:
%         splinetype : type of spline
%         L     : Length of window.
%         order : Order of B-spline.
%         a     : Time-shift parameter for partition of unity.
%   Output parameters:
%         out   : Almost B-spline.
%         nlen  : Number of non-zero elements in out.
%
%
%   Types are:
%         0 - as pspline, real formed from DFT product
%         1 - forced even by taking ABS value of fft.
%         2 - New even
%         3 - computed from continous case
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_pbspline.html}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
%   AUTHOR : Peter L. Soendergaard.

error(nargchk(4,5,nargin));

if nargin==4
  centering=0;
end;

% Matlab and Octave uses the following definition of a fractional
% power of a complex number. This is consistant with what Unser uses.
% zp=abs(z).^alpha.*exp(i*alpha*angle(z));

% This is always WPE
s1=middlepad([ones(a,1)],L);

nlen=0;

switch splinetype
    
  case 0
    % (Possibly) unsymmeteric spline
    
    % If a=3,7,11,... then the Nyquest frequency will have a negative
    % coefficient, and generate a complex spline. 

    if centering==0

      % Method 1
      out = real(ifft(fft(s1).^(order+1)));
      
      % Method 2
      % Create FFT of spline. Flip over top part, to make it strickly real.
      % This method is more robust against a bad FFT implementation.
      %sf=fft(s1).^(order+1);
      %if rem(L,2)==0
	%  sf(L/2+2:L)=conj(flipud(sf(2:L/2)));
	%else
	%	 sf((L+3)/2:L)=conj(flipud(sf(2:(L+1)/2)));
	%end;
      %sf(L/2+1)
      %out = real(ifft(sf));
      
    else
      s2=middlepad([ones(a,1)],L,.5);
      out = real(ifft(fft(s1).^order.*fft(s2)));
      
    end;
	
  case 1

    % Symmetric spline

    if centering==0
      out = real(ifft(abs(fft(s1)).^(order+1)));
    else
      s2=middlepad([ones(a,1)],L,.5);
      out = real(ifft(abs(fft(s1)).^order.*abs(fft(s2))));

    end;
    
  case 2

    % Mild symmetric

    intorder=floor(order);
    fracorder=order-intorder;

    if centering==0
      out = real(ifft(abs(fft(s1)).^order.*fft(s1)));
    else
      s2=middlepad([ones(a,1)],L,.5);
      out = real(ifft(abs(fft(s1)).^order.*fft(s2)));
    end;
      
    
  case 3
    
    Llong=ceil(a*(order+2)/L)*L;
    x=((0:Llong-1).')/a;
    
    x
    
    out=zeros(Llong,1);
    
    for k=0:order+1
      
      out=out+(-1)^k*ref_bincoeff(order+1,k)*onesidedpower(x-k,order);
      
      out
    end;
    out=out/factorial(order);
    
end;



% Scale such that the elements will form a partition of unity.
out=out./a.^order;

% nlen cannot be larger that L
nlen=min(L,nlen);

% If order is a fraction nlen==L
if rem(order,1)~=0
  nlen=L;
end;

if use_row_layout
  out=out.';
end;

% Normalize
out=out/sqrt(a);


% This code verifies that we have obtained a partition of unity.
%pu=zeros(L,1);
%for ii=0:L/a-1
%  pu=pu+circshift(out,a*ii);
%end;
%pu

% Verify middlepad claim
%norm(out-middlepad(middlepad(out,nlen),L))

  
function xa=onesidedpower(x,a)
  % Compute a one-sided power. See Unser and Blu "Fractional Spline and
  % Wavelets", section 1.1.2

  % Zero all negative values
  x=x.*(x>=0)
  
  % Raise
  xa=x.^a;