File: test_gabmul.m

package info (click to toggle)
octave-ltfat 2.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,256 kB
  • ctags: 3,340
  • sloc: ansic: 13,629; cpp: 6,764; java: 1,499; objc: 345; makefile: 177; python: 103; sh: 18
file content (199 lines) | stat: -rw-r--r-- 5,638 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
%-*- texinfo -*-
%@deftypefn {Function} test_gabmul
%@verbatim
% Compare approximation by Gabor Multiplier by LTFAT and XXL
%
% using
% LTFAT - this toolbox
% XXL   - the collection of MATLAB files by P. Balazs found at 
%         http://www.kfs.oeaw.ac.at/xxl/Dissertation/matlabPhDXXL.html
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/testing/test_gabmul.html}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
clear;

if exist('gabbaspIrr','file') ~= 2
    disp('In this test file the LTFAT implementation is compared to the one found at');
    disp('http://www.kfs.oeaw.ac.at/xxl/Dissertation/matlabPhDXXL.html .');
    disp('Please download and put in search path!');
    return
else
    disp(' ');
    disp('      Compare approximation by Gabor Multiplier by LTFAT and XXL      ');
    disp(' ');
end

L = 144; % vector length 
a = 8; % time parameter, hop size
b = 9; % frequency parameter
usetargetmult = 1; % use a multiplier as target?

N = L/a; 
M = L/b; % number of filters
red = L/(a*b); % redundancy
n_fram = N*M; % number of frame elements
xpo = lattp(L,a,b); % time-frequency sampling points

% Creation of Windows:
g = gabtight(a,M,L);
g = [zeros(1,ceil(L/3)) fftshift(gaussnk(floor(2*L/3)))].';
g = g + i*g;
% here tight, so dual = primal
% gs = pgauss(L);
% gs = gabdual(g,a,M);
% gs = eye(L,1);
% gs = [1 1 1 0 0 0];
% gs = g+10*eps;
gs = randc(L,1);

gd = gabdual(g,a,M);
gsd = gabdual(gs,a,M);

% Creation of target system
if usetargetmult == 0
    % random matrix as target
    T = randc(L,L)+i*randc(L,L);
else
    % random multiplier as target
    origsym = randc(M,N)+i*randc(M,N);
    T = gabmulmat(origsym,g,gs,a);
end

% Frame synthesis matrices:
G_xxl = gabbaspIrr(g,xpo); % XXL
Ga = tfmat('dgt',g,a,M);
Gs = tfmat('dgt',gs,a,M); 
Gd = tfmat('dgt',gd,a,M);

% check frame condition
if cond(Ga) == Inf
    disp('The analysis filterbank does not form a frame!');
else
    disp(sprintf('The analysis filterbank forms a frame with frame bound ratio %g.',cond(Ga)^2));
end

if cond(Gs) == Inf
    disp('The synthesis filterbank does not form a frame!'); % check if gabmulappr gives error!
else
    disp(sprintf('The synthesis filterbank forms a frame with frame bound ratio %g.',cond(Gs)^2));
end

Gram = (Gs'*Gs) .* conj(Ga'*Ga); 

% Frame matrix for tensor products
S_tensor = [];
for ii = 1:n_fram
    P = Ga(:,ii)*Gs(:,ii)';
    S_tensor = [S_tensor P(:)];
end;

% % Gram matrix in HS
if cond(S_tensor) == Inf
     disp('The tensor products do not form a frame sequence!');
else
    disp(sprintf('The tensor products form a frame sequence with frame bound ratio %g.',cond(S_tensor)));
    if det(Gram) ~= 0
        disp('They form a Riesz sequence!');
    end
end
disp(' ');

disp('--- Comparing Gabor systems: ---');
compnorm(G_xxl.',Ga);

lowsym_direct = zeros(M*N,1); %lower symbol as in GMAPPIR
for ii=1:n_fram
      lowsym_direct(ii) =  (Gs(:,ii)')*(T*Ga(:,ii));
end;
lowsym_direct = reshape(lowsym_direct,M,N);
% reordering (conj/invol.) due to TF structure
lowsym_xxl = reshape(diag(Gs'*(T*Ga)),M,N);

lowsym_ltfat = mat2low(T.',g,gs,a,M);
% lowsym_ltfat(T) = lowsym_xxl(T).' = lowsym_ltfat ( T.')

disp('--- Comparing lower symbols: ---');
compnorm(lowsym_xxl,lowsym_direct);
compnorm(lowsym_ltfat,lowsym_xxl);

% % upper symbol:
pinvGram = pinv(Gram);
uppsym_xxl = reshape(pinvGram*(lowsym_xxl(:)),M,N);
uppsym_direct = reshape(pinvGram*(lowsym_direct(:)),M,N);
% uppsym_new = low2upp(lowsym_xxl,g,gs,a);
uppsym_ltfat = gabmulappr(T,g,gs,a,M);

% new idea
% we know: reshape(dgt(T,g,a,M),M,N)-Ga'*T == 0
% so later use (also above) the faster dgt

[GM_irr,uppsym_irr] = GMAPPir(T.',xpo,g,gs);
uppsym_irr = reshape(uppsym_irr,M,N);

disp('--- Comparing upper symbols: ---');
compnorm(uppsym_xxl,uppsym_ltfat);
compnorm(uppsym_xxl,uppsym_direct);
compnorm(uppsym_irr,uppsym_direct);

% compnorm(uppsym_ltfat,uppsym_new);
% compnorm(uppsym_ltfat,uppsym_xxl);
if usetargetmult == 1
    disp('             - Comparing to original symbol: -');
    compnorm(uppsym_ltfat,origsym);
end
 
     % XXL
GM_ltfat = gabmulmat(uppsym_ltfat,g,gs,a);
% conjugation works for Gabor multiplier!!
GM_test = zeros(L,L);
for ii = 1:N*M
    P = Ga(:,ii)*Gs(:,ii)';
    GM_test = GM_test + uppsym_direct(ii)*P;
end;
% direct
GM_direct = Gs*(diag(uppsym_direct(:))*Ga');

disp('--- Comparing matrices: ---');
compnorm(GM_direct,GM_ltfat);
compnorm(GM_ltfat,GM_irr.');
% !!!!!!!!!!!!!!!!
% compnorm(GM_irr,GM_direct);

disp('--- Approximation error: ---');
compnorm(GM_ltfat,T);
compnorm(GM_irr.',T);
compnorm(GM_direct,T);

% %--------------------
% % new idea:
% % use matrix representation of operator
% % take the diagonal for multiplier:
% uppsym_soend = diag(reshape(dgt(T*Gd,g,a,M),9,9)); 
% GM_soend = Gs*(diag(uppsym_soend(:))*Ga');
%
% disp('----- Comparing new idea: -------');
% compnorm(uppsym_direct,uppsym_soend);
% compnorm(GM_direct,GM_soend);
% compnorm(GM_soend,T);