1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
function lambdas=comp_gfeigs(gf,L,a,M)
%-*- texinfo -*-
%@deftypefn {Function} comp_gfeigs
%@verbatim
%COMP_GFEIGS_SEP
% Usage: lambdas=comp_gfeigs(gf,a,M);
%
% Compute Eigenvalues of a Gabor frame operator in
% the separable case.
%
% This is a computational routine, do not call it directly.
%
% See help on GFBOUNDS
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/comp/comp_gfeigs.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Peter L. Soendergaard.
LR=prod(size(gf));
R=LR/L;
b=L/M;
N=L/a;
c=gcd(a,M);
d=gcd(b,N);
p=b/d;
q=N/d;
% Initialize eigenvalues
AF=Inf;
BF=0;
% Holds subsubmatrix.
C=zeros(p,q*R,assert_classname(gf));
lambdas=zeros(p,c*d,assert_classname(gf));
% Iterate through all the subsubmatrices.
for k=0:c*d-1
% Extract p x q*R matrix of array.
C(:)=gf(:,k+1);
% Get eigenvalues of 'squared' subsubmatrix.
lambdas(:,1+k)=eig(C*C');
end;
% Clean eigenvalues, they are real, and
% scale them correctly.
lambdas=real(lambdas);
% Reshape and sort.
lambdas=sort(lambdas(:));
|