1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
function f=comp_idgtreal_fac(coef,gf,L,a,M)
%-*- texinfo -*-
%@deftypefn {Function} comp_idgtreal_fac
%@verbatim
%COMP_IDGTREAL_FAC Full-window factorization of a Gabor matrix assuming.
% Usage: f=comp_idgtreal_fac(c,gf,L,a,M)
%
% Input parameters:
% c : M x N array of coefficients.
% gf : Factorization of window (from facgabm).
% a : Length of time shift.
% M : Number of frequency shifts.
% Output parameters:
% f : Reconstructed signal.
%
% Do not call this function directly, use IDGT.
% This function does not check input parameters!
%
% If input is a matrix, the transformation is applied to
% each column.
%
% This function does not handle multidimensional data, take care before
% you call it.
%
% References:
% T. Strohmer. Numerical algorithms for discrete Gabor expansions. In
% H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and
% Algorithms, chapter 8, pages 267--294. Birkhauser, Boston, 1998.
%
% P. L. Soendergaard. An efficient algorithm for the discrete Gabor
% transform using full length windows. IEEE Signal Process. Letters,
% submitted for publication, 2007.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/comp/comp_idgtreal_fac.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Peter L. Soendergaard.
% TESTING: OK
% REFERENCE: OK
% Calculate the parameters that was not specified.
N=L/a;
b=L/M;
M2=floor(M/2)+1;
R=prod(size(gf))/L;
%W=size(coef,2)/(N*R);
W = size(coef,3);
N=L/a;
b=L/M;
[c,h_a,h_m]=gcd(a,M);
h_a=-h_a;
p=a/c;
q=M/c;
d=N/q;
ff=zeros(p,q*W,c,d,assert_classname(coef,gf));
C=zeros(q*R,q*W,c,d,assert_classname(coef,gf));
f=zeros(L,W,assert_classname(coef,gf));
% Apply ifft to the coefficients.
coef=ifftreal(coef,M)*sqrt(M);
% Set up the small matrices
coef=reshape(coef,M,N,R,W);
if p==1
for rw=0:R-1
for w=0:W-1
for s=0:d-1
for l=0:q-1
for u=0:q-1
C(u+1+rw*q,l+1+w*q,:,s+1)=coef((1:c)+l*c,mod(u+s*q+l,N)+1,rw+1,w+1);
end;
end;
end;
end;
end;
else
% Rational oversampling
for rw=0:R-1
for w=0:W-1
for s=0:d-1
for l=0:q-1
for u=0:q-1
C(u+1+rw*q,l+1+w*q,:,s+1)=coef((1:c)+l*c,mod(u+s*q-l*h_a,N)+1,rw+1,w+1);
end;
end;
end;
end;
end;
end;
% FFT them
if d>1
C=fft(C,[],4);
end;
% Multiply them
for r=0:c-1
for s=0:d-1
CM=reshape(C(:,:,r+1,s+1),q*R,q*W);
GM=reshape(gf(:,r+s*c+1),p,q*R);
ff(:,:,r+1,s+1)=GM*CM;
end;
end;
% Inverse FFT
if d>1
ff=ifft(ff,[],4);
end;
% Place the result
if p==1
for s=0:d-1
for w=0:W-1
for l=0:q-1
f((1:c)+mod(s*M+l*a,L),w+1)=reshape(ff(1,l+1+w*q,:,s+1),c,1);
end;
end;
end;
else
% Rational oversampling
for s=0:d-1
for w=0:W-1
for l=0:q-1
for k=0:p-1
f((1:c)+mod(k*M+s*p*M-l*h_a*a,L),w+1)=reshape(ff(k+1,l+1+w*q,:,s+1),c,1);
end;
end;
end;
end;
end;
f=real(f);
|