1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
function f = comp_ifwt(c,g,a,J,Ls,ext)
%-*- texinfo -*-
%@deftypefn {Function} comp_ifwt
%@verbatim
%COMP_IFWT Compute Inverse DWT
% Usage: f = comp_ifwt(c,g,J,a,Ls,ext);
%
% Input parameters:
% c : Cell array of length M = J*(filtNo-1)+1. Each element is Lc(m)*W array
% g : Synthesis wavelet filters - cell-array of length filtNo.
% J : Number of filterbank iterations.
% a : Upsampling factors - array of length filtNo.
% Ls : Length of the reconstructed signal.
% ext : 'per','zero','odd','even', Type of the forward transform boundary handling.
%
% Output parameters:
% f : Reconstructed data - Ls*W array.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/comp/comp_ifwt.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% see comp_fwt for explanantion
assert(a(1)==a(2),'First two elements of a are not equal. Such wavelet filterbank is not suported.');
% Impulse responses to a correct format.
filtNo = numel(g);
%gCell = cellfun(@(gEl) conj(flipud(gEl.h(:))),g,'UniformOutput',0);
gCell = cellfun(@(gEl) gEl.h(:),g,'UniformOutput',0);
if strcmp(ext,'per')
% Initial shift of the filter to compensate for it's delay.
% "Zero" delay reconstruction is produced.
% offset = cellfun(@(gEl) gEl.offset,g);
%offset = cellfun(@(gEl) 1-numel(gEl.h)-gEl.offset,g);
offset = cellfun(@(gEl) gEl.offset,g);
elseif strcmp(ext,'valid')
offset = -cellfun(@(gEl) numel(gEl.h)-1,g);
else
% -1 + 1 = 0 is used for better readability and to be consistent
% with the shift in comp_fwt.
% Here we are cheating, because we are making the filters
% anti-causal to compensate for the delay introduced by causal
% analysis filters.
% Instead, we could have used causal filters here and do the
% delay compensation at the end (cropping f).
% offset = -cellfun(@(gEl) numel(gEl),gCell) + (a -1) +1;
offset = -(a-1);
end
Lc = cellfun(@(cEl) size(cEl,1),c);
Lc(end+1) = Ls;
tempca = c(1);
cRunPtr = 2;
for jj=1:J
tempca=comp_ifilterbank_td([tempca;c(cRunPtr:cRunPtr+filtNo-2)],gCell,a,Lc(cRunPtr+filtNo-1),offset,ext);
cRunPtr = cRunPtr + filtNo -1;
end
% Save reconstructed data.
f = tempca;
% for ch=1:chans
% tempca = c(LcStart(1):LcEnd(1),ch);
% LcRunPtr = filtNo+1;
% cRunPtr = 2;
% for jj=1:J
% tempca = comp_upconv({tempca}, Lc(LcRunPtr),{tmpg{1}},a(1),skip(1),ext,0);
% for ff=2:filtNo
% % tempca = tempca + comp_upconv({c{cRunPtr}(:,ch)}, Lc(LcRunPtr),{tmpg},a(ff),skip,doNoExt,0);
% tempca = tempca + comp_upconv({c(LcStart(cRunPtr):LcEnd(cRunPtr),ch)}, Lc(LcRunPtr),{tmpg{ff}},a(ff),skip(ff),ext,0);
% cRunPtr = cRunPtr + 1;
% end
% LcRunPtr = LcRunPtr + filtNo -1;
% end
% f(:,ch) = tempca;
% end
|