File: comp_pgauss.m

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (73 lines) | stat: -rw-r--r-- 1,918 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
function [g]=comp_pgauss(L,w,c_t,c_f)
%-*- texinfo -*-
%@deftypefn {Function} comp_pgauss
%@verbatim
%COMP_PGAUSS  Sampled, periodized Gaussian.
%   
%   Computational routine: See help on PGAUSS.
%
%   center=0  gives whole-point centered function.
%   center=.5 gives half-point centered function.
%
%   Does not check input parameters, do not call this
%   function directly.
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/comp/comp_pgauss.html}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   AUTHOR : Peter L. Soendergaard.

%   AUTHOR : Peter L. Soendergaard.
%   TESTING: OK
%   REFERENCE: OK

% c_t - time centering
% c_f - frequency centering

% Input data type cannot be determined
g=zeros(L,1);

if L==0
  return;
end;

sqrtl=sqrt(L);
safe=4;

% Keep the delay in a sane interval
c_t=rem(c_t,L);

% Outside the interval [-safe,safe] then exp(-pi*x.^2) is numerically zero.
nk=ceil(safe/sqrt(L/sqrt(w)));
lr=(0:L-1).'+c_t;
for k=-nk:nk  
  g=g+exp(-pi*(lr/sqrtl-k*sqrtl).^2/w+2*pi*i*c_f*(lr/L-k));
end;

% Normalize it exactly.
g=g/norm(g);

% This normalization is only approximate, it works for the continous case
% but not for the discrete
%g=g*(w*L/2)^(-.25);