File: comp_wfac.m

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (102 lines) | stat: -rw-r--r-- 2,533 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function gf=comp_wfac(g,a,M)
%-*- texinfo -*-
%@deftypefn {Function} comp_wfac
%@verbatim
%COMP_WFAC  Compute window factorization
%  Usage: gf=comp_wfac(g,a,M);
%
%   References:
%     T. Strohmer. Numerical algorithms for discrete Gabor expansions. In
%     H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and
%     Algorithms, chapter 8, pages 267--294. Birkhauser, Boston, 1998.
%     
%     P. L. Soendergaard. An efficient algorithm for the discrete Gabor
%     transform using full length windows. IEEE Signal Process. Letters,
%     submitted for publication, 2007.
%     
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/comp/comp_wfac.html}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   AUTHOR : Peter L. Soendergaard.
%   TESTING: OK
%   REFERENCE: OK
  
L=size(g,1);
R=size(g,2);

N=L/a;
b=L/M;

c=gcd(a,M);
p=a/c;
q=M/c;
d=N/q;

gf=zeros(p,q*R,c,d,assert_classname(g));

% Set up the small matrices
% The w loop is only used for multiwindows, which should be a rare occurence.
% Therefore, we make it the outermost
if p==1  
  % Integer oversampling
  if (c==1) && (d==1) && (R==1)
    % --- Short time Fourier transform of single signal ---
    % This is used for spectrograms of short signals.            
    for l=0:q-1	  
      gf(1,l+1,1,1)=g(mod(-l,L)+1);
    end;

  else

    for w=0:R-1
      for s=0:d-1
	for l=0:q-1	  
	  gf(1,l+1+q*w,:,s+1)=g((1:c)+mod(-l*a+s*p*M,L),w+1);
	end;
      end;
    end;

  end;
else
  % Rational oversampling

  for w=0:R-1
    for s=0:d-1
      for l=0:q-1
	for k=0:p-1	    
	  gf(k+1,l+1+q*w,:,s+1)=g((1:c)+c*mod(k*q-l*p+s*p*q,d*p*q),w+1);
	end;
      end;
    end;
  end;

end;

% dft them
if d>1
  gf=fft(gf,[],4);
end;

% Scale by the sqrt(M) comming from Walnuts representation
gf=gf*sqrt(M);

gf=reshape(gf,p*q*R,c*d);