1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
%-*- texinfo -*-
%@deftypefn {Function} demo_audiocompression
%@verbatim
%DEMO_AUDIOCOMPRESSION Audio compression using N-term approx
%
% This demos shows how to do audio compression using best N-term
% approximation of an WMDCT transform.
%
% The signal is transformed using an orthonormal WMDCT transform.
% Then approximations with a fixed number N of coefficients are obtained
% by:
%
% Linear approximation: The N coefficients with lowest frequency
% index are kept.
%
% Non-linear approximation: The N largest coefficients (in
% magnitude) are kept.
%
% The corresponding approximated signal can be computed using IWMDCT.
%
% Figure 1: Rate-distorition plot
%
% The figure shows the output Signal to Noise Ratio (SNR) as a function
% of the number of retained coefficients.
%
% Note: The inverse WMDCT is not needed for computing computing
% SNRs. Instead Parseval theorem states that the norm of a signal equals
% the norm of the sequence of its WMDCT coefficients.
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/demos/demo_audiocompression.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Load audio signal
% Use the 'glockenspiel' signal.
sig=gspi;
% Shorten signal
L = 2^16;
sig = sig(1:L);
% Number of frequency channels
M = 1024;
% Number of time steps
N = L/M;
% Generate window
gamma = wilorth(M,L);
% Compute wmdct coefficients
c = wmdct(sig,gamma,M);
% L2 norm of signal
InputL2Norm = norm(c,'fro');
% Approximate, and compute SNR values
kmax = M;
kmin = kmax/32; % 32 is an arbitrary choice
krange = kmin:32:(kmax-1); % same remark
for k = krange,
ResL2Norm_NL = norm(c-largestn(c,k*N),'fro');
SNR_NL(k) = 20*log10(InputL2Norm/ResL2Norm_NL);
ResL2Norm_L = norm(c(k:kmax,:),'fro');
SNR_L(k) = 20*log10(InputL2Norm/ResL2Norm_L);
end
% Plot
figure(1);
set(gca,'fontsize',14);
plot(krange*N,SNR_NL(krange),'x-b',...
krange*N,SNR_L(krange),'o-r');
axis tight; grid;
legend('Best N-term','Linear');
xlabel('Number of Samples', 'fontsize',14);
ylabel('SNR (dB)','fontsize',14);
|