1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
function demo_blockproc_paramequalizer(source,varargin)
%-*- texinfo -*-
%@deftypefn {Function} demo_blockproc_paramequalizer
%@verbatim
%DEMO_BLOCKPROC_PARAMEQUALIZER Real-time equalizer demonstration
% Usage: demo_blockproc_paramequalizer('gspi.wav')
%
% For additional help call DEMO_BLOCKPROC_PARAMEQUALIZER without arguments.
%
% This demonstration shows an example of a octave parametric
% equalizer. See chapter 5.2 in the book by Zolzer.
%
% References:
% U. Zolzer. Digital Audio Signal Processing. John Wiley and Sons Ltd, 2
% edition, 2008.
%
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/demos/demo_blockproc_paramequalizer.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
if demo_blockproc_header(mfilename,nargin)
return;
end
% Buffer length
% Larger the number the higher the processing delay. 1024 with fs=44100Hz
% makes ~23ms.
% The value can be any positive integer.
% Note that the processing itself can introduce additional delay.
% Quality parameter of the peaking filters
Q = sqrt(2);
% Filters
filts = [
struct('Hb',[1;0],'Ha',[1;0],'G',0,'Z',[0;0],'type','lsf'),...
struct('Hb',[1;0;0],'Ha',[1;0;0],'G',0,'Z',[0;0],'type','peak'),...
struct('Hb',[1;0;0],'Ha',[1;0;0],'G',0,'Z',[0;0],'type','peak'),...
struct('Hb',[1;0;0],'Ha',[1;0;0],'G',0,'Z',[0;0],'type','peak'),...
struct('Hb',[1;0;0],'Ha',[1;0;0],'G',0,'Z',[0;0],'type','peak'),...
struct('Hb',[1;0;0],'Ha',[1;0;0],'G',0,'Z',[0;0],'type','hsf')...
];
% Control pannel (Java object)
% Each entry determines one parameter to be changed during the main loop
% execution.
pcell = cell(1,numel(filts));
for ii=1:numel(filts)
pcell{ii} = {sprintf('band%i',ii),'Gain',-10,10,filts(ii).G,41};
end
p = blockpanel(pcell);
% Setup blocktream
try
fs = block(source,varargin{:},'loadind',p);
catch
% Close the windows if initialization fails
blockdone(p);
err = lasterror;
error(err.message);
end
% Buffer length (30 ms)
bufLen = floor(30e-3*fs);
% Cutoff/center frequency
feq = [0.0060, 0.0156, 0.0313, 0.0625, 0.1250, 0.2600]*fs;
% Build the filters
[filts(1).Ha, filts(1).Hb] = parlsf(feq(1),blockpanelget(p,'band1'),fs);
[filts(2).Ha, filts(2).Hb] = parpeak(feq(2),Q,blockpanelget(p,'band2'),fs);
[filts(3).Ha, filts(3).Hb] = parpeak(feq(3),Q,blockpanelget(p,'band3'),fs);
[filts(4).Ha, filts(4).Hb] = parpeak(feq(4),Q,blockpanelget(p,'band4'),fs);
[filts(5).Ha, filts(5).Hb] = parpeak(feq(5),Q,blockpanelget(p,'band5'),fs);
[filts(6).Ha, filts(6).Hb] = parhsf(feq(6),blockpanelget(p,'band6'),fs);
flag = 1;
%Loop until end of the stream (flag) and until panel is opened
while flag && p.flag
% Obtain gains of the respective filters
G = blockpanelget(p,'band1','band2','band3','band4','band5','band6');
% Check if any of the user-defined gains is different from the actual ones
% and do recomputation.
for ii=1:numel(filts)
if G(ii)~=filts(ii).G
filts(ii).G = G(ii);
if strcmpi('lsf',filts(ii).type)
[filts(ii).Ha, filts(ii).Hb] = parlsf(feq(ii),filts(ii).G,fs);
elseif strcmpi('hsf',filts(ii).type)
[filts(ii).Ha, filts(ii).Hb] = parhsf(feq(ii),filts(ii).G,fs);
elseif strcmpi('peak',filts(ii).type)
[filts(ii).Ha, filts(ii).Hb] = parpeak(feq(ii),Q,filts(ii).G,fs);
else
error('Uknown filter type.');
end
end
end
% Read block of length bufLen
[f,flag] = blockread(bufLen);
% Do the filtering. Output of one filter is passed to the input of the
% following filter. Internal conditions are used and stored.
for ii=1:numel(filts)
[f,filts(ii).Z] = filter(filts(ii).Ha,filts(ii).Hb,f,filts(ii).Z);
end
% Play the block
blockplay(f);
end
blockdone(p);
function [Ha,Hb]=parlsf(fc,G,Fs)
% PARLSF Parametric Low-Shelwing filter
% Input parameters:
% fm : Cut-off frequency
% G : Gain in dB
% Fs : Sampling frequency
% Output parameters:
% Ha : Transfer function numerator coefficients.
% Hb : Transfer function denominator coefficients.
%
% For details see Table 5.4 in the reference.
Ha = zeros(3,1);
Hb = zeros(3,1);
%b0
Hb(1) = 1;
Ha(1) = 1;
K = tan(pi*fc/Fs);
if G>0
V0=10^(G/20);
den = 1 + sqrt(2)*K + K*K;
% a0
Ha(1) = (1+sqrt(2*V0)*K+V0*K*K)/den;
% a1
Ha(2) = 2*(V0*K*K-1)/den;
% a2
Ha(3) = (1-sqrt(2*V0)*K+V0*K*K)/den;
% b1
Hb(2) = 2*(K*K-1)/den;
% b2
Hb(3) = (1-sqrt(2)*K+K*K)/den;
elseif G<0
V0=10^(-G/20);
den = 1 + sqrt(2*V0)*K + V0*K*K;
% a0
Ha(1) = (1+sqrt(2)*K+K*K)/den;
% a1
Ha(2) = 2*(K*K-1)/den;
% a2
Ha(3) = (1-sqrt(2)*K+K*K)/den;
% b1
Hb(2) = 2*(V0*K*K-1)/den;
% b2
Hb(3) = (1-sqrt(2*V0)*K+V0*K*K)/den;
end
function [Ha,Hb]=parpeak(fc,Q,G,Fs)
% PARLSF Parametric Peaking filter
% Input parameters:
% fm : Cut-off frequency
% Q : Filter quality. Q=fc/B, where B is filter bandwidth.
% G : Gain in dB
% Fs : Sampling frequency
% Output parameters:
% Ha : Transfer function numerator coefficients.
% Hb : Transfer function denominator coefficients.
%
% For details see Table 5.3 in the reference.
Ha = zeros(3,1);
Hb = zeros(3,1);
%b0
Hb(1) = 1;
Ha(1) = 1;
K = tan(pi*fc/Fs);
if G>0
V0=10^(G/20);
den = 1 + K/Q + K*K;
% a0
Ha(1) = (1+V0*K/Q+K*K)/den;
% a1
Ha(2) = 2*(K*K-1)/den;
% a2
Ha(3) = (1-V0*K/Q+K*K)/den;
% b1
Hb(2) = 2*(K*K-1)/den;
% b2
Hb(3) = (1-K/Q+K*K)/den;
elseif G<0
V0=10^(-G/20);
den = 1 + V0*K/Q + K*K;
% a0
Ha(1) = (1+K/Q+K*K)/den;
% a1
Ha(2) = 2*(K*K-1)/den;
% a2
Ha(3) = (1-K/Q+K*K)/den;
% b1
Hb(2) = 2*(K*K-1)/den;
% b2
Hb(3) = (1-V0*K/Q+K*K)/den;
end
function [Ha,Hb]=parhsf(fm,G,Fs)
% PARLSF Parametric High-shelving filter
% Input parameters:
% fm : Cut-off frequency
% G : Gain in dB
% Fs : Sampling frequency
% Output parameters:
% Ha : Transfer function numerator coefficients.
% Hb : Transfer function denominator coefficients.
%
% For details see Table 5.3 in the reference.
Ha = zeros(3,1);
Hb = zeros(3,1);
%b0
Hb(1) = 1;
Ha(1) = 1;
K = tan(pi*fm/Fs);
if G>0
V0=10^(G/20);
den = 1 + sqrt(2)*K + K*K;
% a0
Ha(1) = (V0+sqrt(2*V0)*K+K*K)/den;
% a1
Ha(2) = 2*(K*K-V0)/den;
% a2
Ha(3) = (V0-sqrt(2*V0)*K+K*K)/den;
% b1
Hb(2) = 2*(K*K-1)/den;
% b2
Hb(3) = (1-sqrt(2)*K+K*K)/den;
elseif G<0
V0=10^(-G/20);
den = V0 + sqrt(2*V0)*K + K*K;
% a0
Ha(1) = (1+sqrt(2)*K+K*K)/den;
% a1
Ha(2) = 2*(K*K-1)/den;
% a2
Ha(3) = (1-sqrt(2)*K+K*K)/den;
% b1
Hb(2) = 2*(K*K/V0-1)/den;
% b2
Hb(3) = (1-sqrt(2/V0)*K+K*K/V0)/den;
end
|