1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
function demo_bpframemul
%-*- texinfo -*-
%@deftypefn {Function} demo_bpframemul
%@verbatim
%DEMO_BPFRAMEMUL Frame multiplier acting as a time-varying bandpass filter
%
% This demo demonstrates creation and effect of a Gabor multiplier. The
% multiplier performs a time-varying bandpass filtering. The band-pass
% filter with center frequency changing over time is explicitly created
% but it is treated as a "black box" system. The symbol is identified by
% "probing" the system with a white noise and dividing DGT of the output
% by DGT of the input element-wise. The symbol is smoothed out by a 5x5
% median filter.
%
% Figure 1: The symbol of the multiplier.
%
% This figure shows a symbol used in the Gabor multiplier.
%
% Figure 2: Spectroram obtained by re-analysis of the test signal after applying the multiplier
%
% This figure shows a spectrogram of the test signal after applying
% the estimated Gabor multiplier.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/demos/demo_bpframemul.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Sampling rate
fs = 44100;
% Input signal
f = gspi;
% Input length
L = numel(gspi);
% Initial center frequency of the band-pass filter
fc = 5000;
% Modulation parameter for the center frequency of the band-pass filter
fvar = 4800;
% Gabor system parameters
win = {'tight','hann',882};
a = 200;
M = 1000;
% The bandpass filter chnges it's center frequency every 2*a samples
Lch = ceil(L/(2*a));
L = Lch*2*a;
% Center frequencies
l = 0:Lch-1;
l = l(:);
fcm = fc+fvar*sin(2*pi*l/Lch*10);
% Parameters of the bandpass filter
G = 40;
Q = 4;
Ha = zeros(Lch,3);
Hb = zeros(Lch,3);
% Design a IIR peaking filters ...
for l=1:Lch
[Ha(l,:),Hb(l,:)]=parpeak(fcm(l),Q,G,fs);
end
% ...and make them band-pass filters.
Ha = Ha/10^(G/20);
% Create a white noise and divide it into input into blocks
ff = randn(L,1);
fblocks = reshape(ff,numel(ff)/Lch,Lch);
% Do a blockwise filtering of the white noise
y = blockfilter(fblocks,Ha,Hb);
% Obtain DGT of the output ...
cy = dgtreal(y(:),win,a,M);
% And the input
cx = dgtreal(fblocks(:),win,a,M);
% Create a symbol by a plain division of DGT of the output and the input.
% (This would be a deconvolution if Fourier multiplier was used)
symbol = cy./cx;
% Smooth out the extremes using a 2D 5x5 median filter
symbol = cmedfilt2(symbol,[5,5]);
% Plot the symbol
figure(1);
plotdgtreal(symbol,a,M,44100,'dynrange',50);
% Apply the symbol to a test signal
f = postpad(f,L);
c = dgtreal(f,win,a,M);
c = c.*symbol;
fhat = idgtreal(c,win,a,M,L);
% Plot spectrogram of the resulting signal
figure(2);
c = dgtreal(fhat,win,a,M);
plotdgtreal(c,a,M,44100,'dynrange',50);
% Filter the input signal by the time-varying band-pass filter directly
y = blockfilter(reshape(f,numel(f)/Lch,Lch),Ha,Hb);
% Export the signals (since we are in a function)
assignin('base','forig', f(:));
assignin('base','fmul', fhat(:));
assignin('base','fdir', y(:));
disp('The original signal can be played by typing: sound(forig,44100);');
disp(['The signal obtained by a direct filtering cen be played by ',...
'(this is what is approximated by the multiplier): sound(fdir,44100);']);
disp(['The signal obtained by applying the Gabor multiplier: sound(fmul,44100);']);
function y = blockfilter(fb,Ha,Hb)
%BLOCKFILTER Block filtering
y = zeros(size(fb));
Lch = size(fb,2);
Z = zeros(2,1);
for l=1:Lch
[y(:,l),Z] = filter(Ha(l,:),Hb(l,:),fb(:,l),Z);
end
function fo = cmedfilt2(f,d)
% CMEDFILT2 Complex 2D median filter
if any(rem(d,2)~=1)
error('%s: Median filer window should have odd dimensions.',...
upper(mfilename));
end
dims = size(f);
if dims(1) < d(1)
error('%s: Median filer height is bigger than the image height.',...
upper(mfilename));
end
if dims(2) < d(2)
error('%s: Median filer width is bigger than the image width.',...
upper(mfilename));
end
fo = f;
whalf = floor(d(2)/2);
hhalf = floor(d(1)/2);
% Safely inside of the image
% The border values are taken from the input
for ii=(1+hhalf):(dims(1)-hhalf)
for jj=(1+whalf):(dims(2)-whalf)
neigh = sort(reshape(f(ii-hhalf:ii+hhalf,jj-whalf:jj+whalf),[],1));
fo(ii,jj) = neigh(ceil(end/2));
end
end
% Top rows
for ii=1:hhalf
for jj=(1+whalf):(dims(2)-whalf)
neigh = sort(reshape(f(1:ii+hhalf,jj-whalf:jj+whalf),[],1));
fo(ii,jj) = neigh(ceil(end/2));
end
end
% Top bottom rows
for ii=1:hhalf
for jj=(1+whalf):(dims(2)-whalf)
neigh = sort(reshape(f(end+1-(ii+hhalf):end,jj-whalf:jj+whalf),[],1));
fo(end+1-ii,jj) = neigh(ceil(end/2));
end
end
% The leftmost and rightmost collumns are not processed...
function [Ha,Hb]=parpeak(fc,Q,G,Fs)
% PARLSF Parametric Peaking filter
% Input parameters:
% fm : Cut-off frequency
% Q : Filter quality. Q=fc/B, where B is filter bandwidth.
% G : Gain in dB
% Fs : Sampling frequency
% Output parameters:
% Ha : Transfer function numerator coefficients.
% Hb : Transfer function denominator coefficients.
%
% For details see Table 5.3 in the Zolzer: Digital Audio Signal
% Processing, 2nd Edition, ISBN: 978-0-470-99785-7
Ha = zeros(3,1);
Hb = zeros(3,1);
%b0
Hb(1) = 1;
Ha(1) = 1;
K = tan(pi*fc/Fs);
if G>0
V0=10^(G/20);
den = 1 + K/Q + K*K;
% a0
Ha(1) = (1+V0*K/Q+K*K)/den;
% a1
Ha(2) = 2*(K*K-1)/den;
% a2
Ha(3) = (1-V0*K/Q+K*K)/den;
% b1
Hb(2) = 2*(K*K-1)/den;
% b2
Hb(3) = (1-K/Q+K*K)/den;
elseif G<0
V0=10^(-G/20);
den = 1 + V0*K/Q + K*K;
% a0
Ha(1) = (1+K/Q+K*K)/den;
% a1
Ha(2) = 2*(K*K-1)/den;
% a2
Ha(3) = (1-K/Q+K*K)/den;
% b1
Hb(2) = 2*(K*K-1)/den;
% b2
Hb(3) = (1-V0*K/Q+K*K)/den;
end
|