1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
%-*- texinfo -*-
%@deftypefn {Function} demo_gabfir
%@verbatim
%DEMO_GABFIR Working with FIR windows
%
% This demo demonstrates how to work with FIR windows in Gabor systems.
%
% FIR windows are the windows traditionally used in signal processing.
% They are short, much shorter than the signal, and this is used to make
% effecient algorithms. They are also the only choice for applications
% involving streaming data.
%
% It is very easy to compute a spectrogram or Gabor coefficients using a
% FIR window. The hard part is reconstruction, because both the window and
% the dual window used for reconstruction must be FIR, and this is hard
% to obtain, if the window is longer than the number of channels.
%
% This demo demonstrates two methods:
%
% 1) Using a Gabor frame with a simple structure, for which dual/tight
% FIR windows are easy to construct. This is a very common
% technique in traditional signal processing, but it limits the
% choice of windows and lattice parameters.
%
% 2) Cutting a canonical dual/tight window. We compute the canonical
% dual window of the analysis window, and cut away the parts that
% are close to zero. This will work for any analysis window and
% any lattice constant, but the reconstruction obtained is not
% perfect.
%
% Figure 1: Hanning FIR window
%
% This figure shows the a Hanning window in the time domain and its
% magnitude response.
%
% Figure 2: Kaiser-Bessel FIR window
%
% This figure shows a Kaiser Bessel window and its magnitude response,
% and the same two plots for the canonical dual of the window.
%
% Figure 3: Gaussian FIR window for low redundancy
%
% This figure shows a truncated Gaussian window and its magnitude
% response. The same two plots are show for the truncated canonical
% dual window.
%
% Figure 4: Almost tight Gaussian FIR window
%
% This figure shows a tight Gaussian window that has been truncated
% and its magnitude response.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/demos/demo_gabfir.html}
%@seealso{firwin, firkaiser, gabdual}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% -------- first part: Analytically known FIR window -----------------
% The lattice constants to use.
a=16;
M=2*a;
% When working with FIR windows, some routines (gabdualnorm, magresp)
% require a transform length. Strictly speaking, this should be infinity,
% but this is not possible in the current implementation. Choosing an
% LLong that is some high multiple of M provides a very good approximation
% of the correct result.
LLong=M*16;
% Compute the iterated sine window. This window is a tight window when used
% with a Gabor system where the number of channels is larger than or
% equal to the length of the window.
g=gabwin('itersine',a,M);
disp('');
disp('Reconstruction error using itersine window, should be close to zero:');
gabdualnorm(g,g,a,M,LLong)
figure(1);
% Plot the window in the time-domain.
subplot(2,1,1);
plot(fftshift(g));
title('itersine FIR window.');
% Plot the magnitude response of the window (the frequency representation of
% the window on a dB scale).
subplot(2,1,2);
magresp(g,'fir','dynrange',100);
title('Magnitude response of itersine window.');
% -------- second part: True, short FIR window -------------------------
% If the length of the window is less than or equal to the number of
% channels M, then the canonical dual and tight windows will have the
% same support. This case is explicitly supported by gabdual
% Set up a nice Kaiser-Bessel window.
g=firkaiser(M,3.2,'energy');
% Compute the canonical dual window
gd=gabdual(g,a,M);
disp('');
disp('Reconstruction error canonical dual of Kaiser window, should be close to zero:');
gabdualnorm(g,gd,a,M)
figure(2);
% Plot the window in the time-domain.
subplot(2,2,1);
plot(fftshift(g));
title('Kaiser window.');
% Plot the magnitude response of the window (the frequency representation of
% the window on a dB scale).
subplot(2,2,2);
magresp(g,'fir','dynrange',100);
title('Magnitude response of Kaiser window.');
% Plot the window in the time-domain.
subplot(2,2,3);
plot(fftshift(gd));
title('Dual of Kaiser window.');
% Plot the magnitude response of the window (the frequency representation of
% the window on a dB scale).
subplot(2,2,4);
magresp(gd,'fir','dynrange',100);
title('Magnitude response of dual Kaiser window.');
% -------- Third part, cutting a LONG window --------------
% We can now work with any lattice constants and lower redundancies.
a=12;
M=18;
% LLong plays the same role as in the first part. It must be a multiple of
% both 'a' and M.
LLong=M*a*16;
% Construct an LONG Gaussian window with optimal time/frequency resolution.
glong=pgauss(LLong,a*M/LLong);
% Cut it to a FIR window, preserving the WPE symmetry.
% The length must be a multiple of M.
gfir=long2fir(glong,2*M,'wp');
% Extend the cutted window, and compute the dual window of this.
gfirextend=fir2long(gfir,LLong);
gd_long=gabdual(gfirextend,a,M);
% Cut it, preserving the WPE symmetry
gd_fir=long2fir(gd_long,6*M,'wp');
% Compute the reconstruction error
disp('');
disp('Reconstruction error using cutted dual window.');
recerr = gabdualnorm(gfir,gd_fir,a,M,LLong)
disp('');
disp('or expressed in dB:');
10*log10(recerr)
figure(3);
% Plot the window in the time-domain.
subplot(2,2,1);
plot(fftshift(gfir));
title('Gaussian FIR window.');
% Plot the magnitude response of the window (the frequency representation of
% the window on a dB scale).
subplot(2,2,2);
magresp(gfir,'fir','dynrange',100);
title('Magnitude response of FIR Gaussian.')
% Plot the window in the time-domain.
subplot(2,2,3);
plot(fftshift(gd_fir));
title('Dual of Gaussian FIR window.');
% Plot the magnitude response of the window (the frequency representation of
% the window on a dB scale).
subplot(2,2,4);
magresp(gd_fir,'fir','dynrange',100);
title('Magnitude response.');
% ----- Fourth part, cutting a tight LONG window --------------
% We reuse all the parameters of the previous demo.
% Get a tight window.
gt_long = gabtight(a,M,LLong);
% Cut it
gt_fir = long2fir(gt_long,6*M);
% Compute the reconstruction error
disp('');
disp('Reconstruction error using cutted tight window.');
recerr = gabdualnorm(gt_fir,gt_fir,a,M,LLong)
disp('');
disp('or expressed in dB:');
10*log10(recerr)
figure(4);
% Plot the window in the time-domain.
subplot(2,1,1);
plot(fftshift(gt_fir));
title('Almost tight FIR window.');
% Plot the magnitude response of the window (the frequency representation of
% the window on a dB scale).
subplot(2,1,2);
magresp(gt_fir,'fir','dynrange',100);
title('Magnitude response.');
|