1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
%-*- texinfo -*-
%@deftypefn {Function} demo_pgauss
%@verbatim
%DEMO_PGAUSS How to use PGAUSS
%
% This script illustrates various properties of the Gaussian function.
%
% Figure 1: Window+Dual+Tight
%
% This figure shows an optimally centered Gaussian for a
% given Gabor system, its canonical dual and tight windows
% and the DFTs of these windows.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/demos/demo_pgauss.html}
%@seealso{pgauss}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
disp('Type "help demo_pgauss" to see a description of how this demo works.');
% A quick test: If the second input parameter to
% pgauss is not specified, the output will be
% invariant under an unitary DFT. Matlabs FFT is does not
% preserve the norm, so it must be scaled a bit.
L=128;
g=pgauss(L);
disp('');
disp('Test of DFT invariance: Should be close to zero.');
norm(g-dft(g))
% Setup parameters and length of signal.
% Note that it must hold that L=M*b=N*a for some integers
% b and N, and that a <= M
L=72; % Length of signal.
a=6; % Time shift.
M=9; % Number of modulations.
% Calculate the frequency shift.
b=L/M;
% For this Gabor system, the optimally concentrated Gaussian
% is given by
g=pgauss(L,a/b);
% This is not invarient with respect to a DFT, but it is still
% real and whole point even
disp('');
disp('The function is WP even. The following should be 1.');
isevenfunction(g)
disp('Therefore, its DFT is real.');
disp('The norm of the imaginary part should be close to zero.');
norm(imag(dft(g)))
% Calculate the canonical dual.
gdual=gabdual(g,a,M);
% Calculate the canonical tight window.
gtight=gabtight(g,a,M);
% Plot them:
% Standard note on plotting:
%
% - All windows have real DFTs, but Matlab does not
% always recoqnize this, so we have to filter away
% the small imaginary part by calling REAL(...)
%
% - The windows are all centered around zero, but this
% is not visually pleasing, so the window must be
% shifted to the middle by an FFTSHIFT
%
gf_plot = fftshift(real(dft(g)));
gdual_plot = fftshift(gdual);
gdualf_plot = fftshift(real(dft(gdual)));
gtight_plot = fftshift(gtight);
gtightf_plot = fftshift(real(dft(gtight)));
figure(1);
subplot(3,2,1);
x=(1:L).';
plot(x,fftshift(g),'-',...
x,circshift(fftshift(g),a),'-',...
x,circshift(fftshift(g),-a),'-');
title('g=pgauss(72,6/8)');
subplot(3,2,2);
plot(gf_plot);
title('g, frequency domain');
subplot(3,2,3);
plot(gdual_plot);
title('Dual window of g');
subplot(3,2,4);
plot(gdualf_plot);
title('dual window, frequency domain');
subplot(3,2,5);
plot(gtight_plot);
title('Tight window generated from g');
subplot(3,2,6);
plot(gtightf_plot);
title('tight window, frequency domain');
|