File: gabmuleigs.m

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (222 lines) | stat: -rw-r--r-- 5,732 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
function [V,D]=gabmuleigs(K,c,p3,varargin)
%-*- texinfo -*-
%@deftypefn {Function} gabmuleigs
%@verbatim
%GABMULEIGS  Eigenpairs of Gabor multiplier
%   Usage:  h=gabmuleigs(K,c,g,a);
%           h=gabmuleigs(K,c,a);
%           h=gabmuleigs(K,c,ga,gs,a);
%
%   Input parameters:
%         K     : Number of eigenvectors to compute.
%         c     : symbol of Gabor multiplier
%         g     : analysis/synthesis window
%         ga    : analysis window
%         gs    : synthesis window
%         a     : Length of time shift.
%   Output parameters:
%         V     : Matrix containing eigenvectors.
%         D     : Eigenvalues.
%
%   GABMULEIGS has been deprecated. Please use construct a frame multiplier
%   and use FRAMEMULEIGS instead.
%
%   A call to GABMULEIGS(K,c,ga,gs,a) can be replaced by :
%
%     [Fa,Fs]=framepair('dgt',ga,gs,a,M);
%     [V,D]=framemuleigs(Fa,Fs,s,K);
%
%   Original help:
%   --------------
%
%   GABMULEIGS(K,c,g,a) computes the K largest eigenvalues and eigen-
%   vectors of the Gabor multiplier with symbol c and time shift a.  The
%   number of channels is deduced from the size of the symbol c.  The
%   window g will be used for both analysis and synthesis.
%
%   GABMULEIGS(K,c,ga,gs,a) does the same using the window the window ga*
%   for analysis and gs for synthesis.
%
%   GABMULEIGS(K,c,a) does the same using the a tight Gaussian window of
%   for analysis and synthesis.
%
%   If K is empty, then all eigenvalues/pairs will be returned.
%
%   GABMULEIGS takes the following parameters at the end of the line of input
%   arguments:
%
%     'tol',t      Stop if relative residual error is less than the
%                  specified tolerance. Default is 1e-9 
%
%     'maxit',n    Do at most n iterations.
%
%     'iter'       Call eigs to use an iterative algorithm.
%
%     'full'       Call eig to sole the full problem.
%
%     'auto'       Use the full method for small problems and the
%                  iterative method for larger problems. This is the
%                  default. 
%
%     'crossover',c
%                  Set the problem size for which the 'auto' method
%                  switches. Default is 200.
%
%     'print'      Display the progress.
%
%     'quiet'      Don't print anything, this is the default.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/deprecated/gabmuleigs.html}
%@seealso{gabmul, dgt, idgt, gabdual, gabtight}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

warning(['LTFAT: GABMULEIGS has been deprecated, please use FRAMEMULEIGS ' ...
         'instead. See the help on FRAMEMULEIGS for more details.']);

% Change this to 1 or 2 to see the iterative method in action.
printopts=0;

if nargin<3
  error('%s: Too few input parameters.',upper(mfilename));
end;

if nargout==2
  doV=1;
else
  doV=0;
end;

M=size(c,1);
N=size(c,2);

istight=1;
if numel(p3)==1
  % Usage: h=gabmuleigs(c,K,a);  
  a=p3;
  L=N*a;
  ga=gabtight(a,M,L);
  gs=ga;
  arglist=varargin;
else 
  if numel(varargin{1})==1
    % Usage: h=gabmuleigs(c,K,g,a);  
    ga=p3;
    gs=p3;
    a=varargin{1};
    L=N*a;
    arglist=varargin(2:end);
  else 
    if numel(varargin{2})==1
      % Usage: h=gabmuleigs(c,K,ga,gs,a);  
      ga=p3;
      gs=varargin{1};
      a =varargin{2};
      L=N*a;
      istight=0;
      arglist=varargin(3:end);
    end;    
  end;
end;

definput.keyvals.maxit=100;
definput.keyvals.tol=1e-9;
definput.keyvals.crossover=200;
definput.flags.print={'quiet','print'};
definput.flags.method={'auto','iter','full'};


[flags,kv]=ltfatarghelper({},definput,arglist);


% Do the computation. For small problems a direct calculation is just as
% fast.

if (flags.do_iter) || (flags.do_auto && L>kv.crossover)
  
  if flags.do_print
    opts.disp=1;
  else
    opts.disp=0;
  end;
  opts.isreal = false;
  opts.maxit  = kv.maxit;
  opts.tol    = kv.tol;
  
  % Setup afun
  afun(1,c,ga,gs,a,M,L);
  
  if doV
    [V,D] = eigs(@afun,L,K,'LM',opts);
  else
    D     = eigs(@afun,L,K,'LM',opts);
  end;

else
  % Compute the transform matrix.
  bigM=tfmat('gabmul',c,ga,gs,a);

  if doV
    [V,D]=eig(bigM);
  else
    D=eig(bigM);
  end;


end;

% The output from eig and eigs is a diagonal matrix, so we must extract the
% diagonal.
D=diag(D);

% Sort them in descending order
[~,idx]=sort(abs(D),1,'descend');
D=D(idx(1:K));

if doV
  V=V(:,idx(1:K));
end;

% Clean the eigenvalues, if we know that they are real-valued
%if isreal(ga) && isreal(gs) && isreal(c)
%  D=real(D);
%end;

% The function has been written in this way, because Octave (at the time
% of writing) does not accept additional parameters at the end of the
% line of input arguments for eigs
function y=afun(x,c_in,ga_in,gs_in,a_in,M_in,L_in)
  persistent c;
  persistent ga;
  persistent gs;
  persistent a;
  persistent M;
  persistent L; 
  
  if nargin>1
    c  = c_in; 
    ga = ga_in;
    gs = gs_in;
    a  = a_in; 
    M  = M_in; 
    L  = L_in;
  else
    y=comp_idgt(c.*comp_dgt(x,ga,a,M,[0 1],0,0,0),gs,a,[0 1],0,0);
  end;