1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
function F=tfmat(ttype,p2,p3,p4,p5)
%-*- texinfo -*-
%@deftypefn {Function} tfmat
%@verbatim
%TFMAT Matrix of transform / operator
% Usage: F=tfmat('fourier',L);
% F=tfmat('dcti',L);
% F=tfmat('dgt',g,a,M);
% F=tfmat('dwilt',g,M);
% F=tfmat('wmdct',g,M);
% F=tfmat('zak',L,a);
% F=tfmat('gabmul',sym,a);
% F=tfmat('spread',c);
%
% TFMAT has been deprecated. Please construct a frame (using FRAME)
% and use FRSYNMATRIX, or construct an operator (using OPERATORNEW)
% and use OPERATORMATRIX instead.
%
% Original help
% -------------
%
% TFMAT returns a matrix F containing the basis functions / atoms of
% one of the transforms in the toolbox. The atoms are placed as column
% vectors in the matrix. A forward transform (analysis) can be done by:
%
% c=F'*f;
%
% and a backwards or adjoint transform (synthesis) can be done by:
%
% r=F*c;
%
% The possibilities are:
%
% TFMAT('fourier',L) returns the matrix of the unitary Fourier
% transform of length L. See DFT.
%
% TFMAT('dcti',L) returns the matrix of the DCTI transform of length
% L. Similarly for 'dctii', 'dctiii', 'dctiv', 'dsti', 'dstii',
% 'dstiii' or 'dstiv'.
%
% TFMAT('dgt',g,a,M) returns a matrix containing all the atoms of the
% Gabor frame with window g and lattice constants a and M.
% TFMAT('dgt',g,a,M,L) will do the same for a FIR window g.
%
% TFMAT('dwilt',g,M) returns a matrix containing all the atoms of the
% Wilson basis with window g and M channels. TFMAT(g,M,L) will do the
% same for a FIR window g.
%
% TFMAT('wmdct',g,M) and TFMAT('wmdct',g,M,L) does the same for an WMDCT
% with M channels.
%
% TFMAT('gabmul',sym,a) return the matrix of the Gabor multiplier with
% symbol sym and time shift a. TFMAT('gabmul',c,g,a) does the same
% using the window g for both analysis and synthesis.
% TFMAT('gabmul',sym,ga,gs,a) does the same using ga as analysis window
% and gs as synthesis window.
%
% TFMAT('spread',c) returns the matrix of the spreading operator with
% symbol c.
%
% TFMAT('zak',L,a) returns the transform matrix for a Zak transform of
% length L and parameter a.
%
% This function should mainly be used for educational purposes or for
% experimenting with systems, as the generated matrix can
% become very large.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/deprecated/tfmat.html}
%@seealso{frsynmatrix, operatormatrix}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
warning(['LTFAT: TFMAT has been deprecated, please use FRSYNMATRIX ' ...
'or OPERATORMATRIX instead.']);
if (nargin<1) || ~ischar(ttype)
error('You must specify the transform type')
end;
switch(lower(ttype))
case {'fourier','dft'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=idft(eye(p2));
case {'dcti'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dcti(eye(p2))';
case {'dctii'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dctii(eye(p2))';
case {'dctiii'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dctiii(eye(p2))';
case {'dctiv'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dctiv(eye(p2))';
case {'dsti'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dsti(eye(p2))';
case {'dstii'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dstii(eye(p2))';
case {'dstiii'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dstiii(eye(p2))';
case {'dstiv'}
complainif_argnonotinrange(nargin,2,2,mfilename);
F=dstiv(eye(p2))';
case {'gabor','dgt'}
complainif_argnonotinrange(nargin,4,5,mfilename);
g=p2;
if nargin==4
L=length(g);
else
L=p5;
end;
a=p3;
M=p4;
N=L/a;
c=reshape(eye(M*N),M,N,M*N);
F=idgt(c,g,a);
case {'wilson','dwilt'}
complainif_argnonotinrange(nargin,3,4,mfilename);
g=p2;
if nargin==3
L=length(g);
else
L=p4;
end;
M=p3;
N=L/M;
c=reshape(eye(M*N),2*M,N/2,M*N);
F=idwilt(c,g);
case {'wmdct'}
complainif_argnonotinrange(nargin,3,4,mfilename);
g=p2;
if nargin==3
L=length(g);
else
L=p4;
end;
M=p3;
N=L/M;
c=reshape(eye(M*N),M,N,M*N);
F=iwmdct(c,g);
case {'spread','spreadop'}
complainif_argnonotinrange(nargin,2,2,mfilename);
c=p2;
L=size(c,2);
F=spreadop(eye(L),c);
case {'gabmul'}
complainif_argnonotinrange(nargin,3,5,mfilename);
sym=p2;
M=size(sym,1);
N=size(sym,2);
switch(nargin)
case 3
a=p3;
L=a*N;
F=gabmul(eye(L),sym,a);
case 4
g=p3;
a=p4;
L=a*N;
F=gabmul(eye(L),sym,g,a);
case 5
ga=p3;
gs=p4;
a=p5;
L=a*N;
F=gabmul(eye(L),sym,ga,gs,a);
end;
case {'ndgt'}
complainif_argnonotinrange(nargin,5,5,mfilename);
g=p2;
a=p3;
M=p4;
L=p5;
%!!! the computation using eye matrix doesn't work if M>sigLen
N=length(a); % number of time positions
MN=sum(M); % total number of frame elements
F=zeros(L,MN);
jj=0;
for ii=1:N
c={eye(M(ii))};
F(:,jj+(1:M(ii)))=indgt(c,g(ii),a(ii),L);
jj=jj+M(ii);
end
case {'zak'}
complainif_argnonotinrange(nargin,3,5,mfilename);
L=p2;
a=p3;
N=L/a;
c=reshape(eye(L),a,N,L);
F=izak(c);
otherwise
error('Unknown transform.');
end;
|