1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
function [gd,relres,iter] = gabconvexopt(g,a,M,varargin)
%-*- texinfo -*-
%@deftypefn {Function} gabconvexopt
%@verbatim
%GABCONVEXOPT Compute a window using convex optimization
% Usage: gout=gabconvexopt(g,a,M);
% gout=gabconvexopt(g,a,M, varagin);
%
% Input parameters:
% g : Window function /initial point (tight case)
% a : Time shift
% M : Number of Channels
%
% Output parameters:
% gout : Output window
% iter : Number of iterations
% relres : Reconstruction error
%
% GABCONVEXOPT(g,a,M) computes a window gout which is the optimal
% solution of the convex optimization problem below
%
% gd = argmin_x || alpha x||_1 + || beta Fx||_1
%
% + || omega (x -g_l) ||_2^2 + delta || x ||_S0
%
% + gamma || nabla F x ||_2^2 + mu || nabla x ||_2^2
%
% such that x satifies the constraints
%
% Three constraints are possible:
%
% x is dual with respect of g
%
% x is tight
%
% x is compactly supported on Ldual
%
% *Note**: This function require the unlocbox. You can download it at
% http://unlocbox.sourceforge.net
%
% The function uses an iterative algorithm to compute the approximate.
% The algorithm can be controlled by the following flags:
%
% 'alpha',alpha Weight in time. If it is a scalar, it represent the
% weights of the entire L1 function in time. If it is a
% vector, it is the associated weight assotiated to each
% component of the L1 norm (length: Ldual).
% Default value is alpha=0.
% *Warning**: this value should not be too big in order to
% avoid the the L1 norm proximal operator kill the signal.
% No L1-time constraint: alpha=0
%
% 'beta',beta Weight in frequency. If it is a scalar, it represent the
% weights of the entire L1 function in frequency. If it is a
% vector, it is the associated weight assotiated to each
% component of the L1 norm in frequency. (length: Ldual).
% Default value is beta=0.
% *Warning**: this value should not be too big in order to
% avoid the the L1 norm proximal operator kill the signal.
% No L1-frequency constraint: beta=0
%
% 'omega',omega Weight in time of the L2-norm. If it is a scalar, it represent the
% weights of the entire L2 function in time. If it is a
% vector, it is the associated weight assotiated to each
% component of the L2 norm (length: Ldual).
% Default value is omega=0.
% No L2-time constraint: omega=0
%
% 'glike',g_l g_l is a windows in time. The algorithm try to shape
% the dual window like g_l. Normalization of g_l is done
% automatically. To use option omega should be different
% from 0. By default g_d=0.
%
% 'mu', mu Weight of the smooth constraint Default value is 1.
% No smooth constraint: mu=0
%
% 'gamma', gamma Weight of the smooth constraint in frequency. Default value is 1.
% No smooth constraint: gamma=0
%
% 'delta', delta Weight of the S0-norm. Default value is 0.
% No S0-norm: delta=0
%
% 'support' Ldual Add a constraint on the support. The windows should
% be compactly supported on Ldual.
%
% 'tight' Look for a tight windows
%
% 'dual' Look for a dual windows (default)
%
% 'painless' Construct a starting guess using a painless-case
% approximation. This is the default
%
% 'zero' Choose a starting guess of zero.
%
% 'rand' Choose a random starting phase.
%
% 'tol',t Stop if relative residual error is less than the
% specified tolerance.
%
% 'maxit',n Do at most n iterations. default 200
%
% 'print' Display the progress.
%
% 'debug' Display all the progresses.
%
% 'quiet' Don't print anything, this is the default.
%
% 'fast' Fast algorithm, this is the default.
%
% 'slow' Safer algorithm, you can try this if the fast algorithm
% is not working. Before using this, try to iterate more.
%
% 'printstep',p If 'print' is specified, then print every p'th
% iteration. Default value is p=10;
%
% 'hardconstraint' Force the projection at the end (default)
%
% 'softconstaint' Do not force the projection at the end
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/gabor/gabconvexopt.html}
%@seealso{gaboptdual, gabdual, gabtight, gabfirtight, gabopttight}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Author: Nathanael Perraudin
% Date : 18 Feb 2014
if nargin<4
error('%s: Too few input parameters.',upper(mfilename));
end;
if numel(g)==1
error('g must be a vector (you probably forgot to supply the window function as input parameter.)');
end;
definput.keyvals.L=[];
definput.keyvals.lt=[0 1];
definput.keyvals.tol=1e-6;
definput.keyvals.maxit=200;
definput.keyvals.printstep=10;
definput.flags.print={'quiet','print','debug'};
definput.flags.algo={'fast','slow'};
definput.flags.constraint={'hardconstraint','softconstaint'};
definput.flags.startphase={'painless','zero','rand'};
definput.flags.type={'dual','tight'};
definput.keyvals.alpha=0;
definput.keyvals.omega=0;
definput.keyvals.beta=0;
definput.keyvals.mu=1;
definput.keyvals.gamma=1;
definput.keyvals.vart=0;
definput.keyvals.varf=0;
definput.keyvals.var2t=0;
definput.keyvals.var2f=0;
definput.keyvals.support=0;
definput.keyvals.delta=0;
definput.keyvals.deltaw=0;
definput.keyvals.glike=zeros(size(g));
[flags,kv]=ltfatarghelper({'L','tol','maxit'},definput,varargin);
% Determine the window. The window /must/ be an FIR window, so it is
% perfectly legal to specify L=[] when calling gabwin
[g,info]=gabwin(g,a,M,[],kv.lt,'callfun',upper(mfilename));
if kv.support
Ldual=kv.support;
% Determine L. L must be longer than L+Ldual+1 to make sure that no convolutions are periodic
L=dgtlength(info.gl+Ldual+1,a,M);
else
L=length(g);
Ldual=L;
end
b=L/M;
% Determine the initial guess
if flags.do_zero
gd_initial=zeros(Ldual,1);
end;
if flags.do_rand
gd_initial=rand(size(g));
end;
if flags.do_painless
gsmall=long2fir(g,M);
gdsmall=gabdual(gsmall,a,M);
gd_initial=fir2long(gdsmall,Ldual);
end;
% -------- do the convex optimization stuff
% Define the long original window
glong=fir2long(g,L);
%gabframebounds(g,a,M)
% Initial point
xin=gd_initial;
xin=fir2long(xin,L);
% -- * Setting the different prox for ppxa *--
% ppxa will minimize all different proxes
% value test for the selection constraint
nb_priors=0;
% - variance -
if kv.vart % constraint in time
if flags.do_debug
param_l1.verbose=1; % display the results
else
param_l1.verbose=0; % do not display anything
end
% alpha is a scalar
if mod(L,2)
w=[0:1:(L-1)/2,(L-1)/2:-1:1]';
else
w=[0:1:L/2-1,L/2:-1:1]';
end
w=w.^2/L;
param_l1.weights=w;
nb_priors=nb_priors+1;
g11.prox= @(x,T) prox_l1(x,kv.vart*T,param_l1); % define the prox_l1 as operator
g11.eval= @(x) kv.vart*norm(w.*x,1); % the objectiv function is the l1 norm
else % no L1 in time constraint
g11.prox= @(x,T) x;
g11.eval= @(x) 0;
end
% - variance -
if kv.varf % constraint in time
param_l1_fourier.A= @(x) 1/sqrt(L)*fft(x); % Fourier operator
param_l1_fourier.At= @(x) sqrt(L)*ifft(x); % adjoint of the Fourier operator
if flags.do_debug
param_l1_fourier.verbose=1; % display the results
else
param_l1_fourier.verbose=0; % do not display anything
end
if mod(L,2)
w=[0:1:(L-1)/2,(L-1)/2:-1:1]';
else
w=[0:1:L/2-1,L/2:-1:1]';
end
w=w.^2/L;
param_l1_fourier.weights=w;
nb_priors=nb_priors+1;
g12.prox= @(x,T) prox_l1(x,kv.varf*T,param_l1_fourier); % define the prox_l1 as operator
g12.eval= @(x) kv.varf*norm(w.*x,1); % the objectiv function is the l1 norm
else % no L1 in time constraint
g12.prox= @(x,T) x;
g12.eval= @(x) 0;
end
% - variance2 -
if kv.var2t % constraint in time
if flags.do_debug
param_l2.verbose=1; % display the results
else
param_l2.verbose=0; % do not display anything
end
% alpha is a scalar
if mod(L,2)
w=[0:1:(L-1)/2,(L-1)/2:-1:1]';
else
w=[0:1:L/2-1,L/2:-1:1]';
end
w=w/sqrt(L);
param_l2.weights=w;
nb_priors=nb_priors+1;
g13.prox= @(x,T) prox_l2(x,kv.var2t*T,param_l2); % define the prox_l1 as operator
g13.eval= @(x) kv.var2t*norm(w.*x,2)^2; % the objectiv function is the l1 norm
else % no L1 in time constraint
g13.prox= @(x,T) x;
g13.eval= @(x) 0;
end
% - variance2 -
if kv.var2f % constraint in time
param_l2_fourier.A= @(x) 1/sqrt(L)*fft(x); % Fourier operator
param_l2_fourier.At= @(x) sqrt(L)*ifft(x); % adjoint of the Fourier operator
if flags.do_debug
param_l2_fourier.verbose=1; % display the results
else
param_l2_fourier.verbose=0; % do not display anything
end
if mod(L,2)
w=[0:1:(L-1)/2,(L-1)/2:-1:1]';
else
w=[0:1:L/2-1,L/2:-1:1]';
end
w=w/sqrt(L);
param_l2_fourier.weights=w;
nb_priors=nb_priors+1;
g14.prox= @(x,T) prox_l2(x,kv.var2f*T,param_l2_fourier); % define the prox_l1 as operator
g14.eval= @(x) kv.var2f*norm(w.*x,2)^2; % the objectiv function is the l1 norm
else % no L1 in time constraint
g14.prox= @(x,T) x;
g14.eval= @(x) 0;
end
% - small L1 norm in coefficient domain -
if kv.alpha % constraint in time
if flags.do_debug
param_l1.verbose=1; % display the results
else
param_l1.verbose=0; % do not display anything
end
if length(kv.alpha)==1 % alpha is a scalar
kv.alpha=ones(size(xin))*kv.alpha;
end
param_l1.weights=kv.alpha;
nb_priors=nb_priors+1;
g1.prox= @(x,T) prox_l1(x,T,param_l1); % define the prox_l1 as operator
g1.eval= @(x) norm(kv.alpha.*x,1); % the objectiv function is the l1 norm
else % no L1 in time constraint
g1.prox= @(x,T) x;
g1.eval= @(x) 0;
end
% - small L1 norm in Fourier domain -
if kv.beta %frequency constraint
param_l1_fourier.A= @(x) 1/sqrt(L)*fft(x); % Fourier operator
param_l1_fourier.At= @(x) sqrt(L)*ifft(x); % adjoint of the Fourier operator
if flags.do_debug
param_l1_fourier.verbose=1; % display the results
else
param_l1_fourier.verbose=0; % Do not display anything
end
if length(kv.beta)==1 % alpha is a scalar
kv.beta=ones(size(xin))*kv.beta;
end
param_l1_fourier.weights=kv.beta;
% Here are the step for the prox
% 2) go into the Fourier domain (prox_l1)
% 3) soft thresholding (prox_l1)
% 4) back in the time domain (prox_l1)
nb_priors=nb_priors+1;
g3.prox= @(x,T) prox_l1(x,T,param_l1_fourier);
g3.eval= @(x) norm(kv.beta.*fft(x),1); % objectiv function
else % no L1 in frequency constraint
g3.prox= @(x,T) x;
g3.eval= @(x) 0; % objectiv function
end
% - DUAL OR TIGHT?-
if flags.do_tight
% tight windows
g2.prox= @(x,T) gabtight(x,a,M); % set the prox
g2.eval= @(x) norm(x-gabdual(x,a,M,L)); % objectiv function
else
% - projection on a B2 ball -
% Frame-type matrix of the adjoint lattice
%G=tfmat('dgt',glong,M,a);
Fal=frame('dgt',glong,M,a);
G=framematrix(Fal,L);
d=[a/M;zeros(a*b-1,1)];
% Using a B2 ball projection
% || Gcut' x - b ||_2 < epsilon
% param_proj.A = @(x) G'*x; % forward operator
% param_proj.At = @(x) G*x; % adjoint operator
% param_proj.y = d;
% param_proj.maxit = 200; % maximum of iteration
% param_proj.tight=0; % not a tight frame
% param_proj.nu=norm(G)^2; % frame bound on Gcut'
% param_proj.verbose=0; % diplay summary at the end
% param_proj.epsilon=10*eps; % radius of the B2 ball
% g2.prox= @(x,T) fast_proj_b2(x,T,param_proj); % set the prox
% Using a direct projection (better solution)
param_proj.verbose=flags.do_debug;
param_proj.y=d;
param_proj.A=G';
param_proj.AAtinv=(G'*G)^(-1);
g2.prox= @(x,T) proj_dual(x,T,param_proj); % set the prox
g2.eval= @(x) norm(G'*x-d); % objectiv function
end
% SUPPORT CONSTRAINT
if kv.support
% - set null coefficient
g4.prox = @(x,T) forceeven(fir2long(long2fir(x,Ldual),L));
g4.eval = @(x) 0;
% - function apply the two projections thanks to a poc algorithm.
if flags.do_tight
G={g2,g4};
paramPOCS.tol=20*eps;
paramPOCS.maxit=5000;
paramPOCS.verbose=flags.do_print+flags.do_debug;
paramPOCS.abs_tol=1;
g5.prox = @(x,T) pocs(x,G,paramPOCS);
% g5.prox = @(x,T) ppxa(x,G,paramPOCS);
% g5.prox = @(x,T) douglas_rachford(x,g2,g4,paramPOCS);
% g5.prox = @(x,T) pocs2(x,g2,g4,20*eps,2000, flags.do_print+flags.do_debug);
g5.eval = @(x) 0;
else
Fal=frame('dgt',glong,M,a);
G=framematrix(Fal,L);
d=[a/M;zeros(a*b-1,1)];
Lfirst=ceil(Ldual/2);
Llast=Ldual-Lfirst;
Gcut=G([1:Lfirst,L-Llast+1:L],:);
param_proj2.verbose=flags.do_debug;
param_proj2.y=d;
param_proj2.A=Gcut';
param_proj2.AAtinv=pinv(Gcut'*Gcut);
g5.prox= @(x,T) fir2long(proj_dual(long2fir(x,Ldual),T,param_proj2),L); % set the prox
g5.eval= @(x) norm(G'*x-d); % objectiv function
end
else
g4.prox= @(x,T) x;
g4.eval= @(x) 0; % objectiv function
g5=g2;
end
% - function apply the two projections thanks to a douglas rachford algorithm.
% param_douglas.verbose=1;
% param_douglas.abs_tol=1;
% param_douglas.maxit=2000;
% param_douglas.tol=20*eps;
% g6.prox = @(x,T) douglas_rachford(x,g2,g4,param_douglas);
% g6.eval = @(x) 0;
% - small gradient norm -
% this is the smoothing parameter
if kv.mu
if flags.do_debug
param_l2grad.verbose=1; % display the results
else
param_l2grad.verbose=0; % Do not display anything
end
nb_priors=nb_priors+1;
g7.prox = @(x,T) prox_l2grad(fir2long(x,L),kv.mu*T,param_l2grad);
g7.eval = @(x) norm(gradient(x))^2;
else
g7.prox = @(x,T) x;
g7.eval = @(x) 0;
end
% - small gradient norm in fourrier-
% this is the smoothing parameter
if kv.gamma
if flags.do_debug
param_l2grad.verbose=1; % display the results
else
param_l2grad.verbose=0; % Do not display anything
end
nb_priors=nb_priors+1;
g9.prox = @(x,T) prox_l2gradfourier(fir2long(x,L),kv.gamma*T,param_l2grad);
g9.eval = @(x) norm(gradient(1/sqrt(L)*fft(x)))^2;
else
g9.prox = @(x,T) x;
g9.eval = @(x) 0;
end
% - small L2 norm in coefficient domain -
if kv.omega % constraint in time
if flags.do_debug
param_l2.verbose=1; % display the results
else
param_l2.verbose=0; % do not display anything
end
if length(kv.omega)==1 % alpha is a scalar
kv.alpha=ones(size(xin))*kv.omega;
end
param_l2.weights=kv.omega;
if sum(kv.glike)
kv.glike=fir2long(kv.glike,L);
glike=kv.glike/norm(kv.glike)*norm(gabdual(g,a,M));
param_l2.y=fir2long(glike,L);
end
nb_priors=nb_priors+1;
g8.prox= @(x,T) prox_l2(x,T,param_l2); % define the prox_l2 as operator
g8.eval= @(x) norm(kv.omega.*x-kv.glike,'fro')^2; % the objectiv function is the l2 norm
else % no L1 in time constraint
g8.prox= @(x,T) x;
g8.eval= @(x) 0;
end
% - small S0 norm -
if kv.delta %frequency constraint
gauss=pgauss(L,1);
[A,B]=gabframebounds(gauss,1,L);
AB=(A+B)/2;
param_S0.A= @(x) dgt(x,gauss,1,L)/sqrt(AB);
param_S0.At= @(x) idgt(x,gauss,1,L)/sqrt(AB);
if flags.do_debug
param_S0.verbose=1; % display the results
else
param_S0.verbose=0; % Do not display anything
end
nb_priors=nb_priors+1;
g10.prox= @(x,T) prox_l1(x,T*kv.delta,param_S0);
g10.eval= @(x) kv.delta*norm(reshape(dgt(x,gauss,1,L),[],1),1); % objectiv function
else % no L1 in frequency constraint
g10.prox= @(x,T) x;
g10.eval= @(x) 0; % objectiv function
end
% - small weighted S0 norm -
if kv.deltaw %frequency constraint
gauss=pgauss(L,1);
[A,B]=gabframebounds(gauss,1,L);
AB=(A+B)/2;
param_S0.A= @(x) dgt(x,gauss,1,L)/sqrt(AB);
param_S0.At= @(x) idgt(x,gauss,1,L)/sqrt(AB);
if flags.do_debug
param_S0.verbose=1; % display the results
else
param_S0.verbose=0; % Do not display anything
end
if mod(L,2)
w=[0:1:(L-1)/2,(L-1)/2:-1:1]';
else
w=[0:1:L/2-1,L/2:-1:1]';
end
w=w/sqrt(L);
%W=w*w';
W=repmat(w,1,L).^2+repmat(w',L,1).^2;
W=sqrt(W);
param_S0.weights=W;
nb_priors=nb_priors+1;
g15.prox= @(x,T) prox_l1(x,T*kv.deltaw,param_S0);
g15.eval= @(x) kv.deltaw*norm(reshape(dgt(x,gauss,1,L),[],1),1); % objectiv function
else % no L1 in frequency constraint
g15.prox= @(x,T) x;
g15.eval= @(x) 0; % objectiv function
end
% -- * PPXA function, the solver * --
% parameter for the solver
param.maxit=kv.maxit; % maximum number of iteration
param.tol=kv.tol;
if flags.do_quiet
param.verbose=0;
end
% Definition of the function f (the order is important)
if flags.do_fast && flags.do_tight
F={g1, g3,g7,g9,g8, g2, g4,g10,g11,g12,g13,g14,g15};
else
F={g1, g3,g7,g9,g8, g5,g10,g11,g12,g13,g14,g15};
end
% solving the problem
if nb_priors
[gd,iter,~]=ppxa(xin,F,param);
% Force the hard constraint
if flags.do_hardconstraint
% In case of use of the douglas rachford algo instead of POCS
% gd=g6.prox(gd,0); % force the constraint
gd=g5.prox(gd,0);
end
else
fprintf( ' Warning!!! No prior selected! -- Only perform a projection. \n')
gd=g5.prox(xin,0);
end
% compute the error
if flags.do_tight
relres=gabdualnorm(gd,gd,a,M,L);
else
relres=gabdualnorm(g,gd,a,M,L);
end
if kv.support
% set the good size
gd=long2fir(gd,Ldual);
end
end
% function x=pocs2(x,g1,g2,tol,maxii,flagp)
% % this function implement a POCS algorithm, projection onto convex Set
% % using the differents projection of the algorithm.
% tola=1;
% ii=0;
% tola_old=tola;
% while (tola>tol)
% x=g2.prox(g1.prox(x,0),0);
% tola=g1.eval(x);
% ii=ii+1;
% if (logical(1-logical(mod(ii,50))) && flagp)
% fprintf(' POCS sub-iteration: %i -- Tol : %g\n',ii,tola)
% end
% if ii> maxii
% break;
% end
% if abs(tola_old-tola)/tola<tol % avoid infinite loop
% break;
% end
% tola_old=tola;
% end
% end
function x=forceeven(x)
% this function force the signal to be even
x= (x+involute(x))/2;
end
|