File: gabdual.m

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (223 lines) | stat: -rw-r--r-- 5,900 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
function gd=gabdual(g,a,M,varargin)
%-*- texinfo -*-
%@deftypefn {Function} gabdual
%@verbatim
%GABDUAL  Canonical dual window of Gabor frame
%   Usage:  gd=gabdual(g,a,M);
%           gd=gabdual(g,a,M,L);
%           gd=gabdual(g,a,M,'lt',lt);
%
%   Input parameters:
%         g     : Gabor window.
%         a     : Length of time shift.
%         M     : Number of channels.
%         L     : Length of window. (optional)
%         lt    : Lattice type (for non-separable lattices).
%   Output parameters:
%         gd : Canonical dual window.
%
%   GABDUAL(g,a,M) computes the canonical dual window of the discrete Gabor
%   frame with window g and parameters a, M.
%
%   The window g may be a vector of numerical values, a text string or a
%   cell array. See the help of GABWIN for more details.
%
%   If the length of g is equal to M, then the input window is assumed
%   to be an FIR window. In this case, the canonical dual window also has
%   length of M. Otherwise the smallest possible transform length is chosen
%   as the window length.
%
%   GABDUAL(g,a,M,L) returns a window that is the dual window for a system
%   of length L. Unless the dual window is a FIR window, the dual window
%   will have length L.
%
%   GABDUAL(g,a,M,'lt',lt) does the same for a non-separable lattice
%   specified by lt. Please see the help of MATRIX2LATTICETYPE for a
%   precise description of the parameter lt.
%
%   If a>M then the dual window of the Gabor Riesz sequence with window
%   g and parameters a and M will be calculated.
%
%   Examples:
%   ---------
%
%   The following example shows the canonical dual window of the Gaussian
%   window:
%
%     a=20;
%     M=30;
%     L=300;
%     g=pgauss(L,a*M/L);
%     gd=gabdual(g,a,M);
%     
%     % Simple plot in the time-domain
%     figure(1);
%     plot(gd);
%
%     % Frequency domain
%     figure(2);
%     magresp(gd,'dynrange',100);
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/gabor/gabdual.html}
%@seealso{gabtight, gabwin, fir2long, dgt}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   AUTHOR : Peter L. Soendergaard.
%   TESTING: TEST_DGT
%   REFERENCE: REF_GABDUAL.
  
%% ---------- Assert correct input.

if nargin<3
  error('%s: Too few input parameters.',upper(mfilename));
end;

definput.keyvals.L=[];
definput.keyvals.lt=[0 1];
definput.keyvals.nsalg=0;
[flags,kv,L]=ltfatarghelper({'L'},definput,varargin);

%% ------ step 2: Verify a, M and L
if isempty(L)
    if isnumeric(g)
        % Use the window length
        Ls=length(g);
    else
        % Use the smallest possible length
        Ls=1;
    end;

    % ----- step 2b : Verify a, M and get L from the window length ----------
    L=dgtlength(Ls,a,M,kv.lt);

else

    % ----- step 2a : Verify a, M and get L

    Luser=dgtlength(L,a,M,kv.lt);
    if Luser~=L
        error(['%s: Incorrect transform length L=%i specified. Next valid length ' ...
               'is L=%i. See the help of DGTLENGTH for the requirements.'],...
              upper(mfilename),L,Luser);
    end;

end;

%% ----- step 3 : Determine the window 

[g,info]=gabwin(g,a,M,L,kv.lt,'callfun',upper(mfilename));

if L<info.gl
  error('%s: Window is too long.',upper(mfilename));
end;

R=size(g,2);
% -------- Are we in the Riesz sequence of in the frame case

scale=1;
if a>M*R
  % Handle the Riesz basis (dual lattice) case.
  % Swap a and M, and scale differently.
  scale=a/M;
  tmp=a;
  a=M;
  M=tmp;
end;

% -------- Compute ------------- 

if kv.lt(2)==1
    % Rectangular case
    if (info.gl<=M) && (R==1)
        
        % Diagonal of the frame operator
        d = gabframediag(g,a,M,L);
        gd=g./long2fir(d,info.gl);
                
    else
        
        % Long window case
        
        % Just in case, otherwise the call is harmless. 
        g=fir2long(g,L);
        
        gd=comp_gabdual_long(g,a,M)*scale;
        
    end;

else
    % Non-separable case
    g=fir2long(g,L);

    if (kv.nsalg==1) || (kv.nsalg==0 && kv.lt(2)<=2) 
        
        mwin=comp_nonsepwin2multi(g,a,M,kv.lt,L);
        
        gdfull=comp_gabdual_long(mwin,a*kv.lt(2),M)*scale;
        
        % We need just the first vector
        gd=gdfull(:,1);
            
    else        
        
        [s0,s1,br] = shearfind(L,a,M,kv.lt);        
        
        if s1 ~= 0
            p1 = comp_pchirp(L,s1);
            g = p1.*g;                
        end
        
        b=L/M;
        Mr = L/br;
        ar = a*b/br;
        
        if s0 == 0
            gd=comp_gabdual_long(g,ar,Mr);
        else                
            p0=comp_pchirp(L,-s0);
            g = p0.*fft(g);
            gd=comp_gabdual_long(g,L/Mr,L/ar)*L;
            gd = ifft(conj(p0).*gd);                                 
        end
        
        if s1 ~= 0
            gd = conj(p1).*gd;
        end
        
    end;

    if (info.gl<=M) && (R==1)
        gd=long2fir(gd,M);
    end;
        
end;
    
% --------- post process result -------

if isreal(g) && (kv.lt(2)==1 || kv.lt(2)==2)
  % If g is real and the lattice is either rectangular or quinqux, then
  % the output is known to be real.
  gd=real(gd);
end;

if info.wasrow
  gd=gd.';
end;