1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
function gd=gabdual(g,a,M,varargin)
%-*- texinfo -*-
%@deftypefn {Function} gabdual
%@verbatim
%GABDUAL Canonical dual window of Gabor frame
% Usage: gd=gabdual(g,a,M);
% gd=gabdual(g,a,M,L);
% gd=gabdual(g,a,M,'lt',lt);
%
% Input parameters:
% g : Gabor window.
% a : Length of time shift.
% M : Number of channels.
% L : Length of window. (optional)
% lt : Lattice type (for non-separable lattices).
% Output parameters:
% gd : Canonical dual window.
%
% GABDUAL(g,a,M) computes the canonical dual window of the discrete Gabor
% frame with window g and parameters a, M.
%
% The window g may be a vector of numerical values, a text string or a
% cell array. See the help of GABWIN for more details.
%
% If the length of g is equal to M, then the input window is assumed
% to be an FIR window. In this case, the canonical dual window also has
% length of M. Otherwise the smallest possible transform length is chosen
% as the window length.
%
% GABDUAL(g,a,M,L) returns a window that is the dual window for a system
% of length L. Unless the dual window is a FIR window, the dual window
% will have length L.
%
% GABDUAL(g,a,M,'lt',lt) does the same for a non-separable lattice
% specified by lt. Please see the help of MATRIX2LATTICETYPE for a
% precise description of the parameter lt.
%
% If a>M then the dual window of the Gabor Riesz sequence with window
% g and parameters a and M will be calculated.
%
% Examples:
% ---------
%
% The following example shows the canonical dual window of the Gaussian
% window:
%
% a=20;
% M=30;
% L=300;
% g=pgauss(L,a*M/L);
% gd=gabdual(g,a,M);
%
% % Simple plot in the time-domain
% figure(1);
% plot(gd);
%
% % Frequency domain
% figure(2);
% magresp(gd,'dynrange',100);
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/gabor/gabdual.html}
%@seealso{gabtight, gabwin, fir2long, dgt}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Peter L. Soendergaard.
% TESTING: TEST_DGT
% REFERENCE: REF_GABDUAL.
%% ---------- Assert correct input.
if nargin<3
error('%s: Too few input parameters.',upper(mfilename));
end;
definput.keyvals.L=[];
definput.keyvals.lt=[0 1];
definput.keyvals.nsalg=0;
[flags,kv,L]=ltfatarghelper({'L'},definput,varargin);
%% ------ step 2: Verify a, M and L
if isempty(L)
if isnumeric(g)
% Use the window length
Ls=length(g);
else
% Use the smallest possible length
Ls=1;
end;
% ----- step 2b : Verify a, M and get L from the window length ----------
L=dgtlength(Ls,a,M,kv.lt);
else
% ----- step 2a : Verify a, M and get L
Luser=dgtlength(L,a,M,kv.lt);
if Luser~=L
error(['%s: Incorrect transform length L=%i specified. Next valid length ' ...
'is L=%i. See the help of DGTLENGTH for the requirements.'],...
upper(mfilename),L,Luser);
end;
end;
%% ----- step 3 : Determine the window
[g,info]=gabwin(g,a,M,L,kv.lt,'callfun',upper(mfilename));
if L<info.gl
error('%s: Window is too long.',upper(mfilename));
end;
R=size(g,2);
% -------- Are we in the Riesz sequence of in the frame case
scale=1;
if a>M*R
% Handle the Riesz basis (dual lattice) case.
% Swap a and M, and scale differently.
scale=a/M;
tmp=a;
a=M;
M=tmp;
end;
% -------- Compute -------------
if kv.lt(2)==1
% Rectangular case
if (info.gl<=M) && (R==1)
% Diagonal of the frame operator
d = gabframediag(g,a,M,L);
gd=g./long2fir(d,info.gl);
else
% Long window case
% Just in case, otherwise the call is harmless.
g=fir2long(g,L);
gd=comp_gabdual_long(g,a,M)*scale;
end;
else
% Non-separable case
g=fir2long(g,L);
if (kv.nsalg==1) || (kv.nsalg==0 && kv.lt(2)<=2)
mwin=comp_nonsepwin2multi(g,a,M,kv.lt,L);
gdfull=comp_gabdual_long(mwin,a*kv.lt(2),M)*scale;
% We need just the first vector
gd=gdfull(:,1);
else
[s0,s1,br] = shearfind(L,a,M,kv.lt);
if s1 ~= 0
p1 = comp_pchirp(L,s1);
g = p1.*g;
end
b=L/M;
Mr = L/br;
ar = a*b/br;
if s0 == 0
gd=comp_gabdual_long(g,ar,Mr);
else
p0=comp_pchirp(L,-s0);
g = p0.*fft(g);
gd=comp_gabdual_long(g,L/Mr,L/ar)*L;
gd = ifft(conj(p0).*gd);
end
if s1 ~= 0
gd = conj(p1).*gd;
end
end;
if (info.gl<=M) && (R==1)
gd=long2fir(gd,M);
end;
end;
% --------- post process result -------
if isreal(g) && (kv.lt(2)==1 || kv.lt(2)==2)
% If g is real and the lattice is either rectangular or quinqux, then
% the output is known to be real.
gd=real(gd);
end;
if info.wasrow
gd=gd.';
end;
|