1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
function sr=gabreassign(s,tgrad,fgrad,a)
%-*- texinfo -*-
%@deftypefn {Function} gabreassign
%@verbatim
%GABREASSIGN Reassign time-frequency distribution
% Usage: sr = gabreassign(s,tgrad,fgrad,a);
%
% GABREASSIGN(s,tgrad,fgrad,a) reassigns the values of the positive
% time-frequency distribution s using the phase gradient given by fgrad*
% and tgrad. The lattice is determined by the time shift a and the
% number of channels deduced from the size of s.
%
% fgrad and tgrad can be obtained by the routine GABPHASEGRAD.
%
% Examples:
% ---------
%
% The following example demonstrates how to manually create a
% reassigned spectrogram. An easier way is to just call RESGRAM:
%
% % Create reassigned vector field of the bat signal.
% a=4; M=100;
% [tgrad, fgrad, c] = gabphasegrad('dgt',bat,'gauss',a,M);
%
% % Perform the actual reassignment
% sr = gabreassign(abs(c).^2,tgrad,fgrad,a);
%
% % Display it using plotdgt
% plotdgt(sr,a,143000,50);
%
%
% References:
% F. Auger and P. Flandrin. Improving the readability of time-frequency
% and time-scale representations by the reassignment method. IEEE Trans.
% Signal Process., 43(5):1068--1089, 1995.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/gabor/gabreassign.html}
%@seealso{resgram, gabphasegrad}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Peter L. Soendergaard, 2008.
thisname = upper(mfilename);
complainif_notenoughargs(nargin,4,thisname);
complainif_notposint(a,'a',thisname);
% Basic checks
if any(cellfun(@(el) isempty(el) || ~isnumeric(el),{s,tgrad,fgrad}))
error('%s: s, tgrad, fgrad must be non-empty and numeric.',...
upper(mfilename));
end
% Check if argument sizes are consistent
if ~isequal(size(s),size(tgrad),size(fgrad))
error('%s: s, tgrad, fgrad must all have the same size.',...
upper(mfilename));
end
% Check if any argument is not real
if any(cellfun(@(el) ~isreal(el),{tgrad,fgrad}))
error('%s: tgrad, fgrad must be real.',...
upper(mfilename));
end
% if any(s<0)
% error('%s: s must contain positive numbers only.',...
% upper(mfilename));
% end
sr=comp_gabreassign(s,tgrad,fgrad,a);
% The following code is currently not actived. It calculates the
% reassigment using anti-aliasing, but it make very little visual
% difference, and it is slower.
% [M,N,W]=size(s);
% L=N*a;
% b=L/M;
% freqpos=fftindex(M);
% tgrad=bsxfun(@plus,tgrad/b,freqpos);
% timepos=fftindex(N);
% fgrad=bsxfun(@plus,fgrad/a,timepos.');
% tgrad=round(tgrad);
% fgrad=round(fgrad);
% tgrad=mod(tgrad,M);
% fgrad=mod(fgrad,N);
% sr=zeros(M,N,W);
% fk=mod(floor(tgrad),M)+1;
% ck=mod(ceil(tgrad),M)+1;
% fn=mod(floor(fgrad),N)+1;
% cn=mod(ceil(fgrad),N)+1;
% alpha = fgrad-floor(fgrad);
% beta = tgrad-floor(tgrad);
% m1 =(1-alpha).*(1-beta).*s;
% m2 =(1-alpha).*beta.*s;
% m3 =alpha.*(1-beta).*s;
% m4 =alpha.*beta.*s;
% for ii=1:M
% for jj=1:N
% sr(fk(ii,jj),fn(ii,jj))=sr(fk(ii,jj),fn(ii,jj))+m1(ii,jj);
% sr(ck(ii,jj),fn(ii,jj))=sr(ck(ii,jj),fn(ii,jj))+m2(ii,jj);
% sr(fk(ii,jj),cn(ii,jj))=sr(fk(ii,jj),cn(ii,jj))+m3(ii,jj);
% sr(ck(ii,jj),cn(ii,jj))=sr(ck(ii,jj),cn(ii,jj))+m4(ii,jj);
% end;
% end;
% end;
|