File: gabreassign.m

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (133 lines) | stat: -rw-r--r-- 4,145 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
function sr=gabreassign(s,tgrad,fgrad,a)
%-*- texinfo -*-
%@deftypefn {Function} gabreassign
%@verbatim
%GABREASSIGN  Reassign time-frequency distribution
%   Usage:  sr = gabreassign(s,tgrad,fgrad,a);
%
%   GABREASSIGN(s,tgrad,fgrad,a) reassigns the values of the positive
%   time-frequency distribution s using the phase gradient given by fgrad*
%   and tgrad. The lattice is determined by the time shift a and the 
%   number of channels deduced from the size of s.
%
%   fgrad and tgrad can be obtained by the routine GABPHASEGRAD.
%
%   Examples:
%   ---------
%
%   The following example demonstrates how to manually create a
%   reassigned spectrogram. An easier way is to just call RESGRAM:
%
%     % Create reassigned vector field of the bat signal.
%     a=4; M=100;
%     [tgrad, fgrad, c] = gabphasegrad('dgt',bat,'gauss',a,M);
%
%     % Perform the actual reassignment
%     sr = gabreassign(abs(c).^2,tgrad,fgrad,a);
%
%     % Display it using plotdgt
%     plotdgt(sr,a,143000,50);
%  
%
%   References:
%     F. Auger and P. Flandrin. Improving the readability of time-frequency
%     and time-scale representations by the reassignment method. IEEE Trans.
%     Signal Process., 43(5):1068--1089, 1995.
%     
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/gabor/gabreassign.html}
%@seealso{resgram, gabphasegrad}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Peter L. Soendergaard, 2008.

thisname = upper(mfilename);
complainif_notenoughargs(nargin,4,thisname);
complainif_notposint(a,'a',thisname);


% Basic checks
if any(cellfun(@(el) isempty(el) || ~isnumeric(el),{s,tgrad,fgrad}))
    error('%s: s, tgrad, fgrad must be non-empty and numeric.',...
          upper(mfilename));
end

% Check if argument sizes are consistent
if ~isequal(size(s),size(tgrad),size(fgrad))
   error('%s: s, tgrad, fgrad must all have the same size.',...
          upper(mfilename));
end

% Check if any argument is not real
if any(cellfun(@(el) ~isreal(el),{tgrad,fgrad}))
   error('%s: tgrad, fgrad must be real.',...
          upper(mfilename));
end

% if any(s<0)
%     error('%s: s must contain positive numbers only.',...
%         upper(mfilename));
% end

sr=comp_gabreassign(s,tgrad,fgrad,a);


% The following code is currently not actived. It calculates the
% reassigment using anti-aliasing, but it make very little visual
% difference, and it is slower.
  %   [M,N,W]=size(s);
  %   L=N*a;
  %   b=L/M;
    
  %   freqpos=fftindex(M);  
  %   tgrad=bsxfun(@plus,tgrad/b,freqpos);
        
  %   timepos=fftindex(N);
  %   fgrad=bsxfun(@plus,fgrad/a,timepos.');
    
  %   tgrad=round(tgrad);
  %   fgrad=round(fgrad);
    
  %   tgrad=mod(tgrad,M);
  %   fgrad=mod(fgrad,N);  
    
  %   sr=zeros(M,N,W);
    
  %   fk=mod(floor(tgrad),M)+1;
  %   ck=mod(ceil(tgrad),M)+1;
  %   fn=mod(floor(fgrad),N)+1;
  %   cn=mod(ceil(fgrad),N)+1;
    
  %   alpha = fgrad-floor(fgrad);
  %   beta  = tgrad-floor(tgrad);
  %   m1 =(1-alpha).*(1-beta).*s;
  %   m2 =(1-alpha).*beta.*s;
  %   m3 =alpha.*(1-beta).*s;
  %   m4 =alpha.*beta.*s;
  %   for ii=1:M
  %     for jj=1:N
  %       sr(fk(ii,jj),fn(ii,jj))=sr(fk(ii,jj),fn(ii,jj))+m1(ii,jj);
  %       sr(ck(ii,jj),fn(ii,jj))=sr(ck(ii,jj),fn(ii,jj))+m2(ii,jj);
  %       sr(fk(ii,jj),cn(ii,jj))=sr(fk(ii,jj),cn(ii,jj))+m3(ii,jj);
  %       sr(ck(ii,jj),cn(ii,jj))=sr(ck(ii,jj),cn(ii,jj))+m4(ii,jj);
        
  %     end;
  %   end;
  % end;