1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
function [a,M,lt] = matrix2latticetype(L,V);
%-*- texinfo -*-
%@deftypefn {Function} matrix2latticetype
%@verbatim
%MATRIX2LATTICETYPE Convert matrix form to standard lattice description
% Usage: [a,M,lt] = matrix2latticetype(L,V);
%
% [a,M,lt]=MATRIX2LATTICETYPE(L,V) converts a 2x2 integer matrix
% description into the standard description of a lattice using the a,
% M and lt. The conversion is only valid for the specified transform
% length L.
%
% The lattice type lt is a 1 x2 vector [lt_1,lt_2] denoting an
% irreducible fraction lt_1/lt_2. This fraction describes the distance
% in frequency (counted in frequency channels) that each coefficient is
% offset when moving in time by the time-shift of a. Some examples:
% lt=[0 1] defines a square lattice, lt=[1 2] defines the quinqux
% (almost hexagonal) lattice, lt=[1 3] describes a lattice with a
% 1/3 frequency offset for each time shift and so forth.
%
% An example:
%
% [a,M,lt] = matrix2latticetype(120,[10 0; 5 10])
%
% Coefficient layout:
% -------------------
%
% The following code generates plots which show the coefficient layout
% and enumeration of the first 4 lattices in the time-frequecy plane:
%
% a=6;
% M=6;
% L=36;
% b=L/M;
% N=L/a;
% cw=3;
% ftz=12;
%
% [x,y]=meshgrid(a*(0:N-1),b*(0:M-1));
%
% lt1=[0 1 1 2];
% lt2=[1 2 3 3];
%
% for fignum=1:4
% subplot(2,2,fignum);
% z=y;
% if lt2(fignum)>0
% z=z+mod(lt1(fignum)*x/lt2(fignum),b);
% end;
% for ii=1:M*N
% text(x(ii)-cw/4,z(ii),sprintf('%2.0i',ii),'Fontsize',ftz);
% rectangle('Curvature',[1 1], 'Position',[x(ii)-cw/2,z(ii)-cw/2,cw,cw]);
% end;
% axis([-cw L -cw L]);
% axis('square');
% title(sprintf('lt=[%i %i]',lt1(fignum),lt2(fignum)),'Fontsize',ftz);
% end;
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/gabor/matrix2latticetype.html}
%@seealso{latticetype2matrix}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% The Hermite normal form code was originally written by Arno J. van Leest, 1999.
% Positive determinant by Peter L. Soendergaard, 2004.
% Unique form by Christoph Wiesmeyr, 2012
if nargin~=2
error('%s: Wrong number of input arguments.',upper(mfilename));
end;
% Check if matrix has correct size.
if size(V,1)~=2 || size(V,2)~=2
error('%s: V must be a 2x2 matrix.',upper(mfilename));
end;
% Integer values
if norm(mod(V,1))~=0
error('%s: V must have all integer values.',upper(mfilename));
end;
% Convert to Arnos normal form.
gcd1=gcd(V(1,1),V(1,2));
gcd2=gcd(V(2,1),V(2,2));
A=zeros(2);
A(1,:)=V(1,:)/gcd1;
A(2,:)=V(2,:)/gcd2;
D = det(A);
% Exchange vectors if determinant is negative.
if D<0
D=-D;
A=fliplr(A);
end;
[g,h0,h1] = gcd(A(1,1),A(1,2));
x = A(2,:)*[h0;h1];
x = mod(x,D);
% Octave does not automatically round the double division to integer
% numbers, and this causes confusion later in the GCD computations.
a = gcd1;
b = round(D*gcd2);
s = round(x*gcd2);
% compute nabs format of <a,s>
b1 = gcd(s*lcm(a,L)/a,L);
[a,k1] = gcd(a,L);
s = k1*s;
% update b
b = gcd(b,gcd(b1,L));
% update s
s = mod(s,b);
% conversion from nabs to latticetype
M=L/b;
k=gcd(s,b);
lt=[s/k b/k];
|