1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
function [sym,lowb,upb]=gabmulappr(T,p2,p3,p4,p5);
%-*- texinfo -*-
%@deftypefn {Function} gabmulappr
%@verbatim
%GABMULAPPR Best Approximation by a Gabor multiplier
% Usage: sym=gabmulappr(T,a,M);
% sym=gabmulappr(T,g,a,M);
% sym=gabmulappr(T,ga,gs,a,M);
% [sym,lowb,upb]=gabmulappr( ... );
%
% Input parameters:
% T : matrix to be approximated
% g : analysis/synthesis window
% ga : analysis window
% gs : synthesis window
% a : Length of time shift.
% M : Number of channels.
%
% Output parameters:
% sym : symbol
%
% sym=GABMULAPPR(T,g,a,M) calculates the best approximation of the given
% matrix T in the Frobenius norm by a Gabor multiplier determined by the
% symbol sym over the rectangular time-frequency lattice determined by
% a and M. The window g will be used for both analysis and
% synthesis.
%
% GABMULAPPR(T,a,M) does the same using an optimally concentrated, tight
% Gaussian as window function.
%
% GABMULAPPR(T,gs,ga,a) does the same using the window ga for analysis
% and gs for synthesis.
%
% [sym,lowb,upb]=GABMULAPPR(...) additionally returns the lower and
% upper Riesz bounds of the rank one operators, the projections resulting
% from the tensor products of the analysis and synthesis frames.
%
%
%
% References:
% M. Doerfler and B. Torresani. Representation of operators in the
% time-frequency domain and generalized Gabor multipliers. J. Fourier
% Anal. Appl., 16(2):261--293, April 2010.
%
% P. Balazs. Hilbert-Schmidt operators and frames - classification, best
% approximation by multipliers and algorithms. International Journal of
% Wavelets, Multiresolution and Information Processing, 6:315 -- 330,
% 2008.
%
% P. Balazs. Basic definition and properties of Bessel multipliers.
% Journal of Mathematical Analysis and Applications, 325(1):571--585,
% January 2007.
%
% H. G. Feichtinger, M. Hampejs, and G. Kracher. Approximation of
% matrices by Gabor multipliers. IEEE Signal Procesing Letters,
% 11(11):883--886, 2004.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/operators/gabmulappr.html}
%@seealso{framemulappr, demo_gabmulappr}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Monika Doeerfler
% REFERENCE : REF_GABMULAPPR
% TESTING : TEST_GABMULAPPR
complainif_argnonotinrange(nargin,3,5,mfilename);
L=size(T,1);
if size(T,2)~=L
error('T must be square.');
end;
if nargin==3
% Usage: sym=gabmulappr(T,a,M);
a=p2;
M=p3;
ga=gabtight(a,M,L);
gs=ga;
end;
if nargin==4
% Usage: sym=gabmulappr(T,g,a,M);
ga=p2;
gs=p2;
a=p3;
M=p4;
end;
if nargin==5
% Usage: sym=gabmulappr(T,ga,gm,a,M);
ga=p2;
gs=p3;
a=p4;
M=p5;
end;
if size(ga,2)>1
if size(ga,1)>1
error('Input g/ga must be a vector');
else
% ga was a row vector.
ga=ga(:);
end;
end;
if size(gs,2)>1
if size(gs,1)>1
error('Input g/gs must be a vector');
else
% gs was a row vector.
gs=gs(:);
end;
end;
N=L/a;
b=L/M;
Vg=dgt(gs,ga,1,L);
s=spreadfun(T);
A=zeros(N,M);
V=zeros(N,M);
for k=0:b-1
for l=0:a-1
A = A+ s(l*N+1:(l+1)*N,k*M+1:k*M+M).*conj(Vg(l*N+1:(l+1)*N,k*M+1:k*M+M));
V = V+abs(Vg(l*N+1:(l+1)*N,k*M+1:k*M+M)).^2;
end;
end;
if nargout>1
lowb = min(V(:));
upb = max(V(:));
end;
SF1=A./V;
SF=zeros(N,M);
jjmod=mod(-M:-1,M)+1;
iimod=mod(-N:-1,N)+1;
SF=SF1(iimod,jjmod);
sym=b*dsft(SF)*sqrt(M)/sqrt(N);
|