File: firkaiser.m

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (147 lines) | stat: -rw-r--r-- 3,851 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function g=firkaiser(L,beta,varargin)
%-*- texinfo -*-
%@deftypefn {Function} firkaiser
%@verbatim
%FIRKAISER  Kaiser-Bessel window
%   Usage:  g=firkaiser(L,beta);
%           g=firkaiser(L,beta,...);
%
%   FIRKAISER(L,beta) computes the Kaiser-Bessel window of length L with
%   parameter beta. The smallest element of the window is set to zero when
%   the window has an even length. This gives the window perfect whole-point
%   even symmetry, and makes it possible to use the window for a Wilson
%   basis.
%
%   FIRKAISER takes the following flags at the end of the input arguments:
%
%     'normal'   Normal Kaiser-Bessel window. This is the default.
%
%     'derived'  Derived Kaiser-Bessel window.
%
%     'wp'       Generate a whole point even window. This is the default.
%
%     'hp'       Generate half point even window.
%  
%   Additionally, FIRKAISER accepts flags to normalize the output. Please
%   see the help of NORMALIZE. Default is to use 'peak' normalization.
%
%
%   References:
%     A. V. Oppenheim and R. W. Schafer. Discrete-time signal processing.
%     Prentice Hall, Englewood Cliffs, NJ, 1989.
%     
%     
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/sigproc/firkaiser.html}
%@seealso{firwin, normalize}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

if nargin<2
  error('Too few input arguments.');
end;

if numel(beta)>1
  error('beta must be a scalar.');
end;

% Define initial value for flags and key/value pairs.
definput.import={'normalize'};
definput.importdefaults={'null'};
definput.flags.centering={'wp','hp'};
definput.flags.stype={'normal','derived'};

[flags,keyvals]=ltfatarghelper({},definput,varargin);

cent=0;
if flags.do_hp
  cent=.5;
end;

if flags.do_normal
  
  if (L == 1)
    g = 1;
  else
    m = L - 1;
    k = (0:L-1)'+rem(L,2)/2-.5+cent;
    k = 2*beta/(L-1)*sqrt(k.*(L-1-k));
    g = besseli(0,k)/besseli(0,beta);
  end;

  g=ifftshift(g);
  
  if ((flags.do_wp && rem(L,2)==0) || ...
      (flags.do_hp && rem(L,2)==1))
    
    % Explicitly zero last element. This is done to get the right
    % symmetry, and because that element sometimes turn negative.
    g(floor(L/2)+1)=0;
  end;
  
else
  
  if rem(L,2)==1    
    error('The length of the choosen window must be even.');
  end;
  
  if flags.do_wp 
    if rem(L,4)==0
      L2=L/2+2;
    else
      L2=L/2+1;
    end;
  else
    L2=floor((L+1)/2);
  end;
  
  % Compute a normal Kaiser window
  g_normal=fftshift(firkaiser(L2,beta,flags.centering));
  
  g1=sqrt(cumsum(g_normal(1:L2))./sum(g_normal(1:L2)));
  
  if flags.do_wp 
    if rem(L,2)==0
      g=[flipud(g1);...
         g1(2:L/2)];
    else
      g=[flipud(g1);...
         g1(1:floor(L/2))];
    end;    
  else
    g=[flipud(g1);...
       g1];
  end;

    if ((flags.do_wp && rem(L,2)==0) || ...
      (flags.do_hp && rem(L,2)==1))
    
    % Explicitly zero last element. This is done to get the right
    % symmetry, and because that element sometimes turn negative.
    g(floor(L/2)+1)=0;
  end;

  
end;

% The besseli computation sometimes generates a zero imaginary component.
g=real(g);

g=normalize(g,flags.norm);