File: freqfilter.m

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (139 lines) | stat: -rw-r--r-- 4,806 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function gout=freqfilter(winname,bw,varargin)
%-*- texinfo -*-
%@deftypefn {Function} freqfilter
%@verbatim
%FREQFILTER Construct filter in frequency domain
%   Usage:   g=freqfilter(winname,bw);
%            g=freqfilter(winname,bw,fc);
%
%   Input parameters:
%      winname  : Name of prototype
%      bw       : Effective support length of the prototype
%      fc       : Center frequency
%   
%   FREQFILTER(winname,bw) creates a full-length frequency response
%   filter. The parameter winname specifies the shape of the frequency
%   response. For accepted shape please see FREQWIN. bw defines a
%   -6dB bandwidth of the filter in normalized frequencies.
%   
%   FREQFILTER(winname,bw,fc) constructs a filter with a centre
%   frequency of fc measured in normalized frequencies.
%
%   If one of the inputs is a vector, the output will be a cell array
%   with one entry in the cell array for each element in the vector. If
%   more input are vectors, they must have the same size and shape and the
%   the filters will be generated by stepping through the vectors. This
%   is a quick way to create filters for FILTERBANK and UFILTERBANK.
%   
%   FREQFILTER accepts the following optional parameters:
%
%     'fs',fs     If the sampling frequency fs is specified then the 
%                 bandwidth bw and the centre frequency fc are 
%                 specified in Hz.
%
%     'complex'   Make the filter complex valued if the centre frequency
%                 is non-zero. This is the default.
%
%     'real'      Make the filter real-valued if the centre frequency
%                 is non-zero.
%
%     'delay',d   Set the delay of the filter. Default value is zero.
%
%     'scal',s    Scale the filter by the constant s. This can be
%                 useful to equalize channels in a filter bank.
%
%     'pedantic'  Force window frequency offset (g.foff) to a subsample 
%                 precision by a subsample shift of the window.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/sigproc/freqfilter.html}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% Authors: Nicki Holighaus & Zdenek Prusa
% Date: September 15, 2016 

if ~iscell(winname), winname = {winname}; end

% Define initial value for flags and key/value pairs.
definput.import={'normalize'};
definput.importdefaults={'energy'};
definput.keyvals.delay=0;
definput.keyvals.fc=0;
definput.keyvals.fs=2;
%definput.keyvals.order=4;
definput.keyvals.scal=1;
definput.keyvals.min_win=1;
%definput.keyvals.trunc_at=10^(-5);
definput.keyvals.bwtruncmul = 4;
definput.flags.pedantic = {'pedantic','nopedantic'};
definput.flags.real={'complex','real'};

[flags,kv]=ltfatarghelper({'fc'},definput,varargin);

[bw,kv.fc,kv.delay,kv.scal]=scalardistribute(bw,kv.fc,kv.delay,kv.scal);

% Sanitize
kv.fc=modcent(2*kv.fc/kv.fs,2);

Lw = @(L,bw) min(ceil(bw*kv.bwtruncmul*L/kv.fs),L);
    
fsRestricted = @(L,bw) kv.fs/L*Lw(L,bw);
if flags.pedantic
    fc_offset = @(L,fc) L/2*fc-round(L/2*fc);
else
    fc_offset = @(L,fc) 0;
end

Nfilt = numel(bw);
gout = cell(Nfilt,1);
for ii=1:Nfilt
    g=struct();
    g.foff=@(L) round(L/2*kv.fc(ii)) - floor(Lw(L,bw(ii))/2); 
    
    if flags.do_1 || flags.do_area 
        g.H=@(L) fftshift(...
                 freqwin(winname,Lw(L,bw(ii)),bw(ii),fsRestricted(L,bw(ii)),...
                 'shift',fc_offset(L,kv.fc(ii)))...
                 )*kv.scal(ii)*L;                
    end
    
    if  flags.do_2 || flags.do_energy
        g.H=@(L) fftshift(...
                 freqwin(winname,Lw(L,bw(ii)),bw(ii),fsRestricted(L,bw(ii)),...
                 'shift',fc_offset(L,kv.fc(ii)))...  
                 )*kv.scal(ii)*sqrt(L);                        
    end
        
    if flags.do_inf || flags.do_peak
        g.H=@(L) fftshift(...
                 freqwin(winname,Lw(L,bw(ii)),bw(ii),fsRestricted(L,bw(ii)),...
                 'shift',fc_offset(L,kv.fc(ii)))... 
                 )*kv.scal(ii);           
    end
          
    g.realonly=flags.do_real;
    g.delay=kv.delay(ii);
    g.fs=kv.fs;
    gout{ii}=g;
end

if Nfilt==1
    gout=g;
end;