1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
function [h,g,a,info] = wfilt_qshiftb(N)
%-*- texinfo -*-
%@deftypefn {Function} wfilt_qshiftb
%@verbatim
%WFILT_QSHIFTB Improved Orthogonality and Symmetry properties
%
% Usage: [h,g,a] = wfilt_qshiftb(N);
%
% [h,g,a]=WFILT_QSHIFTB(N) with N in {1,2,3,4,5,6,7} returns
% Kingsbury's Q-shift wavelet filters for tree B.
%
% Examples:
% ---------
% :
% figure(1);
% wfiltinfo('qshiftb3');
%
% References:
% N. G. Kingsbury. A dual-tree complex wavelet transform with improved
% orthogonality and symmetry properties. In ICIP, pages 375--378, 2000.
%
% N. Kingsbury. Design of q-shift complex wavelets for image processing
% using frequency domain energy minimization. In Image Processing, 2003.
% ICIP 2003. Proceedings. 2003 International Conference on, volume 1,
% pages I--1013--16 vol.1, Sept 2003.
%
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/wavelets/wfilt_qshiftb.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Zdenek Prusa
[ha,~,a,info] = wfilt_qshifta(N);
hlp = ha{1}.h;
offset = -(numel(hlp)/2);
range = (0:numel(hlp)-1) + offset;
% Create the filters according to the reference paper.
%
% REMARK: The phase of the alternating +1 and -1 is crucial here.
%
harr = [...
flipud(hlp),...
(-1).^(range).'.*hlp,...
];
htmp=mat2cell(harr,size(harr,1),ones(1,size(harr,2)));
h(1:2,1) = cellfun(@(hEl)struct('h',hEl,'offset',offset),htmp(1:2),...
'UniformOutput',0);
g = h;
|