1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
function [h,g,a,info]=wfilt_sym(N)
%-*- texinfo -*-
%@deftypefn {Function} wfilt_sym
%@verbatim
%WFILT_SYM Symlet filters
% Usage: [h,g,a]=wfilt_sym(N);
%
% [h,g,a]=WFILT_SYM(N) generates the "least asymmetric" Daubechies'
% orthogonal wavelets or "symlets" with N vanishing moments and
% length 2N.
% Zeros of the trigonometrical polynomial the filters consist of in the
% Z-plane are selected alternatingly inside and outside the unit circle.
%
% Remark: Filters generated by this routine differ slightly from the
% ones in the reference (table 6.3, figure. 6.4) because of the ambiguity
% in the algorithm.
%
% Examples:
% ---------
% :
% wfiltinfo('sym8');
%
% References:
% I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and
% Applied Mathematics, Philadelphia, PA, USA, 1992.
%
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/wavelets/wfilt_sym.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.3.1
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Original copyright goes to:
% Copyright (C) 1994, 1995, 1996, by Universidad de Vigo
% Author: Jose Martin Garcia
% e-mail: Uvi_Wave@tsc.uvigo.es
num_coefs = 2*N;
a = [2;2];
info.istight = 1;
if num_coefs==2 % Haar filters
[h,g,a,info]=wfilt_db(1);
return
end
N=num_coefs/2;
poly=trigpol(N); %Calculate trigonometric polynomial
ceros=roots(poly); %Calculate roots
realzeros=[];
imagzeros=[];
numrealzeros=0;
numimagzeros=0;
for i=1:2*(N-1)
if (imag(ceros(i))==0)
numrealzeros=numrealzeros+1;
realzeros(numrealzeros)=ceros(i);
else
numimagzeros=numimagzeros+1;
imagzeros(numimagzeros)=ceros(i);
end
end
%% complex zeros are grouped together
i=0;
for cont=1:numimagzeros/4
modulos(cont)=abs(imagzeros(cont+i));
alfa(cont)=angle(imagzeros(cont+i));
i=i+1;
end
%% Calculate phase contribution of complex and real zeros for all the
%% combination of these zeros. Each group of zeros is identified with a binary
%% number.
indice=2^(numimagzeros/4+numrealzeros/2);
fase=zeros(indice,1001);
for cont=0:indice-1,
bin=dec2bina(cont,log2(indice));
for i=1:length(bin)-numrealzeros/2
if bin(i)
R=1/modulos(i);
else
R=modulos(i);
end
alf=alfa(i);
fase(cont+1,:)=fase(cont+1,:)+atang1(R,alf);
end
ind=1;
for i=length(bin)-numrealzeros/2+1:length(bin)
if bin(i)
R=realzeros(ind+1);
R=realzeros(ind+1);
else
R=realzeros(ind);
end
ind=ind+2;
fase(cont+1,:)=fase(cont+1,:)+atang2(R);
end
end
%% To retain only the non linear part of the phase.
fas=linealiz(fase);
imagzeros=[];
zerosreales=[];
%% To see which phase is closer to zero we select the one with minimun variance
[maximo,pos]=min(sum(fas'.^2));
bin=dec2bina(pos-1,log2(indice));
for i=1:length(bin)-numrealzeros/2
if bin(i)
z1=1/modulos(i)*exp(j*alfa(i));
else
z1=modulos(i)*exp(j*alfa(i));
end
imagzeros=[imagzeros z1 conj(z1)];
end
ind=1;
for i=length(bin)-numrealzeros/2+1:length(bin)
if bin(i)
zerosreales=[zerosreales realzeros(ind+1)];
else
zerosreales=[zerosreales realzeros(ind)];
end
ind=ind+2;
end
% Construction of rh from its zeros
numrealzeros=numrealzeros/2;
numimagzeros=numimagzeros/2;
rh=[1 1];
for i=2:N
rh=conv(rh,[1 1]);
end
for i=1:numrealzeros
rh=conv(rh,[1 -zerosreales(i)]);
end
for i=1:2:numimagzeros
rh=conv(rh,[1 -2*real(imagzeros(i)) abs(imagzeros(i))^2]);
end
% Once ho is factorized in its zeros, it must be normalized multiplying by "cte".
cte=sqrt(2)/sum(rh);
rh=cte*rh;
fLen = length(rh);
% Some odd values of N produce flipped filters
% Bigger N jut take forever to calculate.
if any(N==[7,9]) || ( N>=13 && rem(N,2) == 1)
rh = rh(end:-1:1);
end
g{1} = rh;
g{2} = -(-1).^(0:fLen-1).*g{1}(end:-1:1);
Lh = numel(rh);
d = cellfun(@(gEl) -length(gEl)/2,g);
if N>2
% Do a filter alignment according to "center of mass"
d(1) = -find(abs(g{1})==max(abs(g{1})),1,'first')+1;
d(2) = -find(abs(g{2})==max(abs(g{2})),1,'first')+1;
if abs(rem(d(1)-d(2),2))==1
% Shift d(2) just a bit
d(2) = d(2) - 1;
end
end
g = cellfun(@(gEl,dEl) struct('h',gEl(:),'offset',dEl),g,num2cell(d),'UniformOutput',0);
h = g;
function bin=dec2bina(num,bits)
%DEC2BINA BIN = DEC2BINA(NUM,BITS) returns a vector which contains
% the decimal number NUM in binary format, with a number of
% digits equal to BITS. It is an auxiliary function used by
% SYMLETS.
%--------------------------------------------------------
% Copyright (C) 1994, 1995, 1996, by Universidad de Vigo
%
%
% Uvi_Wave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation; either version 2, or (at your option) any
% later version.
%
% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
% for more details.
%
% You should have received a copy of the GNU General Public License
% along with Uvi_Wave; see the file COPYING. If not, write to the Free
% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
%
% Author: Jose Martin Garcia
% e-mail: Uvi_Wave@tsc.uvigo.es
%--------------------------------------------------------
if nargin<2
flag=0;
else
flag=1;
end
bin=[];
coc=num;
while coc>1
bin=[rem(coc,2) bin];
coc=fix(coc/2);
end
bin=[coc bin];
if flag
if length(bin)<bits
bin=[zeros(1,bits-length(bin)) bin];
end
end
function fase=atang1(R,alfa)
%ATANG1 PHASE=ATANG1(R,ALFA) returns the phase contribution
% of a complex pair of zeros. Linear terms have been
% removed. It is an auxiliary function used by SYMLETS.
%--------------------------------------------------------
% Copyright (C) 1994, 1995, 1996, by Universidad de Vigo
%
%
% Uvi_Wave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation; either version 2, or (at your option) any
% later version.
%
% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
% for more details.
%
% You should have received a copy of the GNU General Public License
% along with Uvi_Wave; see the file COPYING. If not, write to the Free
% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
%
% Author: Jose Martin Garcia
% e-mail: Uvi_Wave@tsc.uvigo.es
%--------------------------------------------------------
w=[0:2*pi/1e3:2*pi]; %frequency axis
fas=atan( (1-R^2)*sin(w)./((1+R^2)*cos(w)-2*R*cos(alfa)) );
zero=acos(2*R*cos(alfa)/(1+R^2));
u1=ceil(zero*1000/(2*pi))+1;
u2=ceil((2*pi-zero)*1000/(2*pi))+1;
if (1-R^2)*sin(zero)<0
cte=pi;
fase=fas+w;
else
fase=fas-w;
cte=-pi;
end
fase(u1:1001)=fase(u1:1001)-cte;
fase(u2:1001)=fase(u2:1001)-cte;
function fase=atang2(R)
%ATANG2 PHASE=ATANG2(R) returns the phase contribution of
% a real zero. Linear terms have been removed. It is
% an auxiliary function used by SYMLETS.
%--------------------------------------------------------
% Copyright (C) 1994, 1995, 1996, by Universidad de Vigo
%
%
% Uvi_Wave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation; either version 2, or (at your option) any
% later version.
%
% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
% for more details.
%
% You should have received a copy of the GNU General Public License
% along with Uvi_Wave; see the file COPYING. If not, write to the Free
% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
%
% Author: Jose Martin Garcia
% e-mail: Uvi_Wave@tsc.uvigo.es
%--------------------------------------------------------
w=[0:2*pi/1e3:2*pi]; %frequency axis
fas=atan( (1+R)/(1-R)*tan(w/2) );
if R<1
fase=fas-w;
cte=-pi;
else
fase=fas+w;
cte=pi;
end;
u=ceil(pi*1000/(2*pi))+2;
fase(u:1001)=fase(u:1001)-cte;
function fase=linealiz(f)
%LINEALIZ PHASE = LINEALIZ(F) is an auxiliary function used
% by SYMLETS. It eliminates the linearity of the
% phase vector F.
%--------------------------------------------------------
% Copyright (C) 1994, 1995, 1996, by Universidad de Vigo
%
%
% Uvi_Wave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation; either version 2, or (at your option) any
% later version.
%
% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
% for more details.
%
% You should have received a copy of the GNU General Public License
% along with Uvi_Wave; see the file COPYING. If not, write to the Free
% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
%
% Author: Jose Martin Garcia
% e-mail: Uvi_Wave@tsc.uvigo.es
%--------------------------------------------------------
if abs(sum(f(1,:))) >0.0001
w=[0:2*pi/1e3:2*pi];
[m,n]=size(f);
fase=zeros(m,n);
for cont=1 : m
if sum(f(cont,:)) >0
fase(cont,:)=f(cont,:)-w/2;
else
fase(cont,:)=f(cont,:)+w/2;
end
end
else
fase=f;
end
function polinomio=trigpol(N)
coefs=zeros(N,2*N-1);
coefs(1,N)=1;
for i=1:N-1
fila=[1 -2 1];
for j=2:i
fila=conv(fila,[1 -2 1]);
end;
fila=numcomb(N-1+i,i)*(-0.25)^i*fila;
fila=[ zeros(1,(N-i-1)) fila zeros(1,(N-i-1))];
coefs(i+1,:)=fila;
end
for i=0:(2*(N-1))
polinomio(i+1)=0;
for j=1:N
polinomio(i+1)=polinomio(i+1)+coefs(j,i+1);
end
end;
function y=numcomb(n,k)
if n==k,
y=1;
elseif k==0,
y=1;
elseif k==1,
y=n;
else
y=fact(n)/(fact(k)*fact(n-k));
end
function y=fact(x)
% FACT Factorial.
% FACT(X) is the factorial of the elements in X vector.
for j=1:length(x)
if x(j)==0,
y(j)=1;
else
y(j)=x(j)*fact(x(j)-1);
end
end
|