File: comp_filterbank_fft.cc

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (82 lines) | stat: -rw-r--r-- 2,813 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#define TYPEDEPARGS 0, 1
#define SINGLEARGS
#define COMPLEXARGS
#define OCTFILENAME comp_filterbank_fft // change to filename
#define OCTFILEHELP "This function calls the C-library\n\
                     c=comp_filterbank_fft(F,G,a)\n Yeah."

#include "ltfat_oct_template_helper.h"

static inline void
fwd_filterbank_fft(const Complex *F, const Complex *G[],
                   const ltfat_int L, const ltfat_int W,
                    ltfat_int a[], const ltfat_int M,
                   Complex *c[])
{
    ltfat_filterbank_fft_d(reinterpret_cast<const ltfat_complex_d *>(F),
                     reinterpret_cast<const ltfat_complex_d **>(G),
                     L, W, a, M,
                     reinterpret_cast<ltfat_complex_d **>(c));
}

static inline void
fwd_filterbank_fft(const FloatComplex *F, const FloatComplex *G[],
                   const ltfat_int L, const ltfat_int W,
                    ltfat_int a[], const ltfat_int M,
                   FloatComplex *c[])
{
    ltfat_filterbank_fft_s(reinterpret_cast<const ltfat_complex_s *>(F),
                     reinterpret_cast<const ltfat_complex_s **>(G),
                     L, W, a, M,
                     reinterpret_cast<ltfat_complex_s **>(c));
}


template <class LTFAT_TYPE, class LTFAT_REAL, class LTFAT_COMPLEX>
octave_value_list octFunction(const octave_value_list& args, int nargout)
{
    // Input data
    MArray<LTFAT_TYPE> F = ltfatOctArray<LTFAT_TYPE>(args(0));
    // Cell aray containing impulse responses
    Cell G = args(1).cell_value();
    // Subsampling factors
    Matrix aDouble = args(2).matrix_value();

    // Input length
    const octave_idx_type L  = F.rows();
    // Number of channels
    const octave_idx_type W  = F.columns();
    // Number of filters
    const octave_idx_type M = G.numel();

    // Allocating temporary arrays
    // Output subband lengths
    OCTAVE_LOCAL_BUFFER (ltfat_int, a, M);
    // Impulse responses pointers
    OCTAVE_LOCAL_BUFFER (const LTFAT_TYPE*, GPtrs, M);
    // Output subbands pointers
    OCTAVE_LOCAL_BUFFER (LTFAT_TYPE*, cPtrs, M);
    // Output cell elements array,
    OCTAVE_LOCAL_BUFFER (MArray<LTFAT_TYPE>, gElems, M);
    OCTAVE_LOCAL_BUFFER (MArray<LTFAT_TYPE>, c_elems, M);

    for (octave_idx_type m = 0; m < M; m++)
    {
        a[m] = (ltfat_int)aDouble(m);
        gElems[m] = ltfatOctArray<LTFAT_TYPE>(G.elem(m));
        GPtrs[m] = gElems[m].data();
        octave_idx_type outLen = (octave_idx_type) ceil( L / aDouble(m) );
        c_elems[m] = MArray<LTFAT_TYPE>(dim_vector(outLen, W));
        cPtrs[m] = c_elems[m].fortran_vec();
    }

    fwd_filterbank_fft(F.data(), GPtrs, L, W, a, M, cPtrs);

    Cell c(dim_vector(M, 1));
    for (octave_idx_type m = 0; m < M; ++m)
    {
        c.elem(m) = c_elems[m];
    }

    return octave_value(c);
}