1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
#if defined(OCTFILENAME) && defined(OCTFILEHELP)
#ifndef _LTFAT_OCT_TEMPLATE_HELPER_H
#define _LTFAT_OCT_TEMPLATE_HELPER_H
#include "ltfat.h"
#include <octave/oct.h>
#define IS_OCTAVE_NEWAPI ((OCTAVE_MAJOR_VERSION > 4) || (OCTAVE_MAJOR_VERSION == 4 && OCTAVE_MINOR_VERSION >= 4))
#ifdef _DEBUG
#define DEBUGINFO octave_stdout << __PRETTY_FUNCTION__ << "\n"
#else
#define DEBUGINFO
#endif
bool checkIsSingle(const octave_value& ov);
octave_value recastToSingle(const octave_value& ov);
bool checkIsComplex(const octave_value& ov);
octave_value recastToComplex(const octave_value& ov);
template <class LTFAT_TYPE, class LTFAT_REAL, class LTFAT_COMPLEX>
octave_value_list octFunction(const octave_value_list& args, int nargout);
template <class LTFAT_TYPE>
MArray<LTFAT_TYPE> ltfatOctArray(const octave_value& ov);
template <class LTFAT_TYPE>
MArray<LTFAT_TYPE> ltfatOctArray(const octave_value& ov)
{
error("Casting to unknown type. "
"Everything should be handled in the specialized functions."
,__PRETTY_FUNCTION__);
return MArray<LTFAT_TYPE>();
}
template <>
MArray<double> ltfatOctArray(const octave_value& ov)
{
if(ov.is_double_type())
{
return (ov.array_value());
}
else
{
error("Unsupported data type..");
}
return MArray<double>();
}
template <>
MArray<float> ltfatOctArray(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
if(ov.isfloat())
#else
if(ov.is_float_type())
#endif
{
return (ov.float_array_value());
}
else
{
error("Unsupported data type..");
}
return MArray<float>();
}
template <>
MArray<Complex> ltfatOctArray(const octave_value& ov)
{
if(ov.is_double_type())
{
return (ov.complex_array_value());
}
else
{
error("Unsupported data type..");
}
return MArray<Complex>();
}
template <>
MArray<FloatComplex> ltfatOctArray(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
if(ov.isfloat())
#else
if(ov.is_float_type())
#endif
{
return (ov.float_complex_array_value());
}
else
{
error("Unsupported data type..");
}
return MArray<FloatComplex>();
}
bool checkIsSingle(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
if(ov.iscell())
#else
if(ov.is_cell())
#endif
{
Cell ov_cell = ov.cell_value();
for(int jj=0;jj<ov_cell.numel();jj++)
{
if(checkIsSingle(ov_cell.elem(jj)))
return true;
}
return false;
}
return ov.is_single_type();
}
bool checkIsComplex(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
if(ov.iscell())
#else
if(ov.is_cell())
#endif
{
Cell ov_cell = ov.cell_value();
for(int jj=0;jj<ov_cell.numel();jj++)
{
if(checkIsComplex(ov_cell.elem(jj)))
return true;
}
return false;
}
#if IS_OCTAVE_NEWAPI
return ov.iscomplex();
#else
return ov.is_complex_type();
#endif
}
octave_value recastToSingle(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
if(ov.iscell())
#else
if(ov.is_cell())
#endif
{
Cell ov_cell = ov.cell_value();
Cell ovtmp_cell(ov.dims());
for(int jj=0;jj<ovtmp_cell.numel();jj++)
{
ovtmp_cell(jj) = recastToSingle(ov_cell.elem(jj));
}
return ovtmp_cell;
}
if(ov.is_single_type())
{
return ov;
}
/*
TODO: ov is struct
*/
// just copy pointer if the element is not numeric
#if IS_OCTAVE_NEWAPI
if(!ov.isnumeric())
#else
if(!ov.is_numeric_type())
#endif
{
return ov;
}
#if IS_OCTAVE_NEWAPI
if(ov.iscomplex())
#else
if(ov.is_complex_type())
#endif
{
return ltfatOctArray<FloatComplex>(ov);
}
else
{
return ltfatOctArray<float>(ov);
}
}
octave_value recastToComplex(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
if(ov.iscell())
#else
if(ov.is_cell())
#endif
{
Cell ov_cell = ov.cell_value();
Cell ovtmp_cell(ov.dims());
for(int jj=0;jj<ovtmp_cell.numel();jj++)
{
ovtmp_cell(jj) = recastToComplex(ov_cell.elem(jj));
}
return ovtmp_cell;
}
#if IS_OCTAVE_NEWAPI
if(ov.iscomplex())
#else
if(ov.is_complex_type())
#endif
{
return ov;
}
/*
TODO: ov is struct
*/
// just copy pointer if the element is not numeric
#if IS_OCTAVE_NEWAPI
if(!ov.isnumeric())
#else
if(!ov.is_numeric_type())
#endif
{
return ov;
}
if(ov.is_single_type())
{
return ltfatOctArray<FloatComplex>(ov);
}
else
{
return ltfatOctArray<Complex>(ov);
}
}
DEFUN_DLD (OCTFILENAME, args, nargout, OCTFILEHELP)
{
octave_value_list argsCopy(args);
#define ENSURESINGLE \
for(int ii=0;ii<tdArgsIfSingle.length();ii++) \
tdArgsIfSingle(ii) = octave_value(recastToSingle(tdArgsIfSingle(ii)));
#define ENSURECOMPLEX \
for(int ii=0;ii<tdArgsIfComplex.length();ii++) \
tdArgsIfComplex(ii) = octave_value(recastToComplex(tdArgsIfComplex(ii)));
bool isAnySingle = false;
bool isAnyComplex = false;
#ifndef TYPEDEPARGS
return octFunction<double,double,Complex>(argsCopy,nargout);
#else
// Arguments, which will be matched by complexity
// If at least one is complex, the others are cast to complex
int prhsToCheckIfComplex[] = { TYPEDEPARGS };
int prhsToCheckIfComplexLen = sizeof(prhsToCheckIfComplex)/sizeof(*prhsToCheckIfComplex);
// Arguments, which will be matchd by data type
// If at least one is single, the others are cast to single
#ifndef MATCHEDARGS
int prhsToCheckIfSingle[] = { TYPEDEPARGS };
#else
int prhsToCheckIfSingle[] = { TYPEDEPARGS, MATCHEDARGS };
#endif
int prhsToCheckIfSingleLen = sizeof(prhsToCheckIfSingle)/sizeof(*prhsToCheckIfSingle);
// WORKAROUND Incorrect detection of the single data type of complex diag. matrices
for(int ii=0;ii<prhsToCheckIfSingleLen;ii++)
if(argsCopy(prhsToCheckIfSingle[ii]).is_diag_matrix())
argsCopy(prhsToCheckIfSingle[ii])= argsCopy(prhsToCheckIfSingle[ii]).full_value();
// Reference arrays holding arguments to be checked
octave_value_list tdArgsIfComplex;
octave_value_list tdArgsIfSingle;
// copy refenrences
for(int ii=0;ii<prhsToCheckIfComplexLen;ii++)
tdArgsIfComplex.append(argsCopy(prhsToCheckIfComplex[ii]));
for(int ii=0;ii<prhsToCheckIfComplexLen;ii++)
tdArgsIfSingle.append(argsCopy(prhsToCheckIfSingle[ii]));
// Check if any of the parameters is single
for(int ii=0;ii<tdArgsIfSingle.length();ii++)
if((isAnySingle=checkIsSingle(tdArgsIfSingle(ii)))) break;
// Check if any of the parameters is complex
for(int ii=0;ii<tdArgsIfComplex.length();ii++)
if((isAnyComplex=checkIsComplex(tdArgsIfComplex(ii)))) break;
#if defined(REALARGS)&& !(defined(COMPLEXARGS) || defined(COMPLEXINDEPENDENT))
if(isAnyComplex)
{
error("Only real inputs are accepted.");
return octave_value_list();
}
#endif
#ifndef SINGLEARGS
if(isAnySingle)
{
error("Only double inputs are accepted.");
return octave_value_list();
}
#endif
/****************** HANDLING COMPLEXINDEPENDENT *************************/
#if defined(COMPLEXINDEPENDENT) || (defined(COMPLEXARGS)&&defined(REALARGS))
if(isAnyComplex) ENSURECOMPLEX
# ifndef SINGLEARGS
if(isAnyComplex)
{
return octFunction<Complex,double,Complex>(argsCopy,nargout);
}
else
{
return octFunction<double,double,Complex>(argsCopy,nargout);
}
# else
if(isAnySingle) ENSURESINGLE
if(isAnyComplex&&isAnySingle)
{
return octFunction<FloatComplex,float,FloatComplex>(argsCopy,nargout);
}
else if(!isAnyComplex&&isAnySingle)
{
return octFunction<float,float,FloatComplex>(argsCopy,nargout);
}
else if(isAnyComplex&&!isAnySingle)
{
return octFunction<Complex,double,Complex>(argsCopy,nargout);
}
else
{
return octFunction<double,double,Complex>(argsCopy,nargout);
}
# endif
/****************** HANDLING ONLY COMPLEX *************************/
#elif defined(COMPLEXARGS) && !defined(REALARGS)
ENSURECOMPLEX
# ifndef SINGLEARGS
return octFunction<Complex,double,Complex>(argsCopy,nargout);
# else
if(isAnySingle)
{
ENSURESINGLE
return octFunction<FloatComplex,float,FloatComplex>(argsCopy,nargout);
}
else
{
return octFunction<Complex,double,Complex>(argsCopy,nargout);
}
# endif
/****************** HANDLING ONLY REAL *************************/
#elif !defined(COMPLEXARGS) && defined(REALARGS)
# ifndef SINGLEARGS
return octFunction<double,double,Complex>(argsCopy,nargout);
# else
if(isAnySingle)
{
ENSURESINGLE
return octFunction<float,float,FloatComplex>(argsCopy,nargout);
}
else
{
return octFunction<double,double,Complex>(argsCopy,nargout);
}
# endif
#else
error("Something wrong in the template system. My bad....\n");
#endif
#endif // TYPEDEPARGS
error("Something fishy is going on in...\n");
#undef ENSURESINGLE
#undef ENSURECOMPLEX
return octave_value_list();
}
#endif // _LTFAT_OCT_TEMPLATE_HELPER_H
#endif // defined(OCTFILENAME) && defined(OCTFILEHELP)
|