File: ltfat_oct_template_helper.h

package info (click to toggle)
octave-ltfat 2.3.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,712 kB
  • sloc: ansic: 30,379; cpp: 8,808; java: 1,499; objc: 345; makefile: 248; xml: 182; python: 124; sh: 18; javascript: 12
file content (399 lines) | stat: -rw-r--r-- 9,022 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#if defined(OCTFILENAME) && defined(OCTFILEHELP)
#ifndef _LTFAT_OCT_TEMPLATE_HELPER_H
#define _LTFAT_OCT_TEMPLATE_HELPER_H
#include "ltfat.h"
#include <octave/oct.h>

#define IS_OCTAVE_NEWAPI ((OCTAVE_MAJOR_VERSION > 4) || (OCTAVE_MAJOR_VERSION == 4 && OCTAVE_MINOR_VERSION >= 4))

#ifdef _DEBUG
#define DEBUGINFO  octave_stdout << __PRETTY_FUNCTION__ << "\n"
#else
#define DEBUGINFO
#endif

bool checkIsSingle(const octave_value& ov);
octave_value recastToSingle(const octave_value& ov);

bool checkIsComplex(const octave_value& ov);
octave_value recastToComplex(const octave_value& ov);

template <class LTFAT_TYPE, class LTFAT_REAL, class LTFAT_COMPLEX>
octave_value_list octFunction(const octave_value_list& args, int nargout);

template <class LTFAT_TYPE>
MArray<LTFAT_TYPE> ltfatOctArray(const octave_value& ov);

template <class LTFAT_TYPE>
MArray<LTFAT_TYPE> ltfatOctArray(const octave_value& ov)
{
   error("Casting to unknown type. "
         "Everything should be handled in the specialized functions."
         ,__PRETTY_FUNCTION__);
   return MArray<LTFAT_TYPE>();
}

template <>
MArray<double> ltfatOctArray(const octave_value& ov)
{
    if(ov.is_double_type())
    {
       return (ov.array_value());
    }
    else
    {
       error("Unsupported data type..");
    }
    return MArray<double>();
}

template <>
MArray<float> ltfatOctArray(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
    if(ov.isfloat())
#else
    if(ov.is_float_type())
#endif
    {
       return (ov.float_array_value());
    }
    else
    {
       error("Unsupported data type..");
    }
    return MArray<float>();
}

template <>
MArray<Complex> ltfatOctArray(const octave_value& ov)
{
    if(ov.is_double_type())
    {
       return (ov.complex_array_value());
    }
    else
    {
       error("Unsupported data type..");
    }
    return MArray<Complex>();
}

template <>
MArray<FloatComplex> ltfatOctArray(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
    if(ov.isfloat())
#else
    if(ov.is_float_type())
#endif
    {
       return (ov.float_complex_array_value());
    }
    else
    {
       error("Unsupported data type..");
    }
    return MArray<FloatComplex>();
}

bool checkIsSingle(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
   if(ov.iscell())
#else
   if(ov.is_cell())
#endif
   {
      Cell ov_cell = ov.cell_value();
      for(int jj=0;jj<ov_cell.numel();jj++)
      {
         if(checkIsSingle(ov_cell.elem(jj)))
            return true;
      }
      return false;
   }
   return ov.is_single_type();
}

bool checkIsComplex(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
   if(ov.iscell())
#else
   if(ov.is_cell())
#endif
   {
      Cell ov_cell = ov.cell_value();
      for(int jj=0;jj<ov_cell.numel();jj++)
      {
         if(checkIsComplex(ov_cell.elem(jj)))
            return true;
      }
      return false;
   }

#if IS_OCTAVE_NEWAPI
   return ov.iscomplex();
#else
   return ov.is_complex_type();
#endif
}

octave_value recastToSingle(const octave_value& ov)
{

#if IS_OCTAVE_NEWAPI
   if(ov.iscell())
#else
   if(ov.is_cell())
#endif
   {
      Cell ov_cell = ov.cell_value();
      Cell ovtmp_cell(ov.dims());
      for(int jj=0;jj<ovtmp_cell.numel();jj++)
      {
         ovtmp_cell(jj) = recastToSingle(ov_cell.elem(jj));
      }
      return ovtmp_cell;
   }

   if(ov.is_single_type())
   {
      return ov;
   }

   /*
   TODO: ov is struct
   */
   // just copy pointer if the element is not numeric
#if IS_OCTAVE_NEWAPI
   if(!ov.isnumeric())
#else
   if(!ov.is_numeric_type())
#endif
   {
      return ov;
   }

#if IS_OCTAVE_NEWAPI
   if(ov.iscomplex())
#else
   if(ov.is_complex_type())
#endif
   {
      return ltfatOctArray<FloatComplex>(ov);
   }
   else
   {
      return ltfatOctArray<float>(ov);
   }
}

octave_value recastToComplex(const octave_value& ov)
{
#if IS_OCTAVE_NEWAPI
   if(ov.iscell())
#else
   if(ov.is_cell())
#endif
   {
      Cell ov_cell = ov.cell_value();
      Cell ovtmp_cell(ov.dims());
      for(int jj=0;jj<ovtmp_cell.numel();jj++)
      {
         ovtmp_cell(jj) = recastToComplex(ov_cell.elem(jj));
      }
      return ovtmp_cell;
   }

 #if IS_OCTAVE_NEWAPI
   if(ov.iscomplex())
#else
   if(ov.is_complex_type())
#endif
   {
      return ov;
   }

   /*
   TODO: ov is struct
   */
   // just copy pointer if the element is not numeric
#if IS_OCTAVE_NEWAPI
   if(!ov.isnumeric())
#else
   if(!ov.is_numeric_type())
#endif
   {
      return ov;
   }

   if(ov.is_single_type())
   {
      return ltfatOctArray<FloatComplex>(ov);
   }
   else
   {
      return ltfatOctArray<Complex>(ov);
   }
}


DEFUN_DLD (OCTFILENAME, args, nargout, OCTFILEHELP)
{
octave_value_list argsCopy(args);

#define ENSURESINGLE                                               \
    for(int ii=0;ii<tdArgsIfSingle.length();ii++)                  \
        tdArgsIfSingle(ii) = octave_value(recastToSingle(tdArgsIfSingle(ii)));

#define ENSURECOMPLEX                                               \
for(int ii=0;ii<tdArgsIfComplex.length();ii++)                      \
    tdArgsIfComplex(ii) = octave_value(recastToComplex(tdArgsIfComplex(ii)));


bool isAnySingle = false;
bool isAnyComplex = false;
#ifndef TYPEDEPARGS
return octFunction<double,double,Complex>(argsCopy,nargout);
#else
// Arguments, which will be matched by complexity
// If at least one is complex, the others are cast to complex
int prhsToCheckIfComplex[] = { TYPEDEPARGS };
int prhsToCheckIfComplexLen = sizeof(prhsToCheckIfComplex)/sizeof(*prhsToCheckIfComplex);

// Arguments, which will be matchd by data type
// If at least one is single, the others are cast to single
#ifndef MATCHEDARGS
   int prhsToCheckIfSingle[] = { TYPEDEPARGS };
#else
   int prhsToCheckIfSingle[] = { TYPEDEPARGS, MATCHEDARGS };
#endif
int prhsToCheckIfSingleLen = sizeof(prhsToCheckIfSingle)/sizeof(*prhsToCheckIfSingle);

// WORKAROUND Incorrect detection of the single data type of complex diag. matrices
for(int ii=0;ii<prhsToCheckIfSingleLen;ii++)
    if(argsCopy(prhsToCheckIfSingle[ii]).is_diag_matrix())
       argsCopy(prhsToCheckIfSingle[ii])= argsCopy(prhsToCheckIfSingle[ii]).full_value();


// Reference arrays holding arguments to be checked
octave_value_list tdArgsIfComplex;
octave_value_list tdArgsIfSingle;

// copy refenrences
for(int ii=0;ii<prhsToCheckIfComplexLen;ii++)
   tdArgsIfComplex.append(argsCopy(prhsToCheckIfComplex[ii]));

for(int ii=0;ii<prhsToCheckIfComplexLen;ii++)
   tdArgsIfSingle.append(argsCopy(prhsToCheckIfSingle[ii]));

// Check if any of the parameters is single
for(int ii=0;ii<tdArgsIfSingle.length();ii++)
    if((isAnySingle=checkIsSingle(tdArgsIfSingle(ii)))) break;

// Check if any of the parameters is complex
for(int ii=0;ii<tdArgsIfComplex.length();ii++)
    if((isAnyComplex=checkIsComplex(tdArgsIfComplex(ii)))) break;

#if defined(REALARGS)&& !(defined(COMPLEXARGS) || defined(COMPLEXINDEPENDENT))
if(isAnyComplex)
{
   error("Only real inputs are accepted.");
   return octave_value_list();
}
#endif

#ifndef SINGLEARGS
if(isAnySingle)
{
   error("Only double inputs are accepted.");
   return octave_value_list();
}
#endif


/****************** HANDLING COMPLEXINDEPENDENT *************************/
#if defined(COMPLEXINDEPENDENT) || (defined(COMPLEXARGS)&&defined(REALARGS))
if(isAnyComplex) ENSURECOMPLEX
#  ifndef SINGLEARGS
if(isAnyComplex)
{
   return octFunction<Complex,double,Complex>(argsCopy,nargout);
}
else
{
   return octFunction<double,double,Complex>(argsCopy,nargout);
}
#  else
if(isAnySingle) ENSURESINGLE

if(isAnyComplex&&isAnySingle)
{
    return octFunction<FloatComplex,float,FloatComplex>(argsCopy,nargout);
}
else if(!isAnyComplex&&isAnySingle)
{
    return octFunction<float,float,FloatComplex>(argsCopy,nargout);
}
else if(isAnyComplex&&!isAnySingle)
{
    return octFunction<Complex,double,Complex>(argsCopy,nargout);
}
else
{
    return octFunction<double,double,Complex>(argsCopy,nargout);
}
#  endif
/****************** HANDLING ONLY COMPLEX *************************/
#elif defined(COMPLEXARGS) && !defined(REALARGS)
ENSURECOMPLEX
#  ifndef SINGLEARGS
   return octFunction<Complex,double,Complex>(argsCopy,nargout);
#  else
if(isAnySingle)
{
   ENSURESINGLE
   return octFunction<FloatComplex,float,FloatComplex>(argsCopy,nargout);
}
else
{
   return octFunction<Complex,double,Complex>(argsCopy,nargout);
}
#  endif
/****************** HANDLING ONLY REAL *************************/
#elif !defined(COMPLEXARGS) && defined(REALARGS)
#  ifndef SINGLEARGS
   return octFunction<double,double,Complex>(argsCopy,nargout);
#  else
if(isAnySingle)
{
   ENSURESINGLE
   return octFunction<float,float,FloatComplex>(argsCopy,nargout);
}
else
{
   return octFunction<double,double,Complex>(argsCopy,nargout);
}
#  endif
#else
error("Something wrong in the template system. My bad....\n");
#endif



#endif // TYPEDEPARGS


error("Something fishy is going on in...\n");

#undef ENSURESINGLE
#undef ENSURECOMPLEX

return octave_value_list();
}


#endif // _LTFAT_OCT_TEMPLATE_HELPER_H
#endif // defined(OCTFILENAME) && defined(OCTFILEHELP)