| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 
 | ## Copyright (c) 2014-2022 Michael Hirsch, Ph.D.
## Copyright (c) 2013-2022 Felipe Geremia Nievinski
## Copyright (C) 2019-2022 Philip Nienhuis
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 1. Redistributions of source code must retain the above copyright notice,
##    this list of conditions and the following disclaimer.
## 2. Redistributions in binary form must reproduce the above copyright notice,
##    this list of conditions and the following disclaimer in the documentation
##    and/or other materials provided with the distribution.
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
## LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
## SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{x}, @var{y}, @var{z} =} aer2ecef (@var{az},@var{el}, @var{slantRange}, @var{lat0}, @var{lon0}, @var{alt0})
## @deftypefnx {Function File} {@var{x}, @var{y}, @var{z} =} aer2ecef (@var{az},@var{el}, @var{slantRange}, @var{lat0}, @var{lon0}, @var{alt0}, @var{spheroid})
## @deftypefnx {Function File} {@var{x}, @var{y}, @var{z} =} aer2ecef (@var{az},@var{el}, @var{slantRange}, @var{lat0}, @var{lon0}, @var{alt0}, @var{spheroid}, @var{angleUnit})
## Convert Azimuth, Elevation, Range (AER) coordinates to Earth Centered Earth
## Fixed (ECEF) coordinates.
##
## Inputs:
## @itemize
## @var{az}, @var{el}, @var{slantrange}: look angles and distance to target
## point(s) (angle, angle, length).  Vectors and nD arrays are accepted
## if they have equal dimensions.
##
## @item
## @var{az}: azimuth angle clockwise from local north.
##
## @item
## @var{el}: elevation angle above local horizon.
##
## @item
## @var{slantrange}: distance from origin in local spherical system.
##
## @item
## @var{lat0}, @var{lon0}, @var{alt0}: latitude, longitude and height of
## local observer location(s) (angle, angle, length).  In case of multiple
## local locations their numbers and dimensions should be equal those of
## the target points.  The length unit(s) should match that/those of the
## target point(s).
##
## @item
## @var{spheroid}: referenceEllipsoid parameter struct; default is wgs84.  A
## string value describing the spheroid or numeric EPSG code is also accepted.
##
## @item
## @var{angleUnit}: string for angular units ('degrees' or 'radians',
## case-insensitive, just the first charachter will do). Default is 'degrees'.
## @end itemize
##
## Outputs:
## @itemize
## @item
## @var{x}, @var{y}, @var{z}: Earth Centered Earth Fixed (ECEF) coordinates.
## @end itemize
##
## Example
## @example
## [x, y, z] = aer2ecef (33, 70, 1e3, 42, -82, 200)
## x =    6.6057e+05
## y =   -4.7002e+06
## z =    4.2450e+06
## @end example
##
## With radians
## @example
## [x, y, z] = aer2ecef (pi/6, pi/3, 1e3, pi/4, -pi/2, 200, "wgs84", "radians")
## x =  250.00
## y =   -4.5180e+06
## z =    4.4884e+06
## @end example
##
## Note: aer2ecef is a mere wrapper for functions geodetic2ecef, aer2enu and
## enu2uvw.
##
## @seealso{ecef2aer, aer2enu, aer2geodetic, aer2ned, referenceEllipsoid}
## @end deftypefn
## Function adapted from patch by anonymous contributor, see:
## https://savannah.gnu.org/patch/index.php?8377
function [x,y,z] = aer2ecef (az, el, slantrange, lat0, lon0, alt0, ...
                             spheroid="", angleUnit="degrees")
  if (nargin < 6 || nargin > 8)
    print_usage();
  endif
  if (! isnumeric (az)         || ! isreal (az) || ...
      ! isnumeric (el)         || ! isreal (el) || ...
      ! isnumeric (slantrange) || ! isreal (slantrange) ||...
      ! isnumeric (lat0)       || ! isreal (lat0) || ...
      ! isnumeric (lon0)       || ! isreal (lon0) ||  ...
      ! isnumeric (alt0)       || ! isreal (alt0))
    error ("aer2ecef: numeric real values expected for first 6 inputs.");
  endif
  if (! all (size (az) == size (el)) || ...
      ! all (size (el) == size (slantrange))) ...
    error ("aer2ecef: non-matching dimensions of AER inputs.");
  endif
  if (! (isscalar (lat0) && isscalar (lon0) && isscalar (alt0)))
    ## Check if for each test point a matching obsrver point is given
    if (! all (size (lat0) == size (az)) || ...
        ! all (size (lon0) == size (el)) || ...
        ! all (size (alt0) == size (slantrange)))
      error (["aer2ecef: non-matching dimensions of observer points and ", ...
              "target points"]);
    endif
  endif
  if (isnumeric (spheroid) && isscalar (spheroid))
    spheroid = num2str (spheroid);
  endif
  E = sph_chk (spheroid);
  %% Origin of the local system in geocentric coordinates.
  [x0, y0, z0] = geodetic2ecef (E, lat0, lon0, alt0, angleUnit);
  %% Convert Local Spherical AER to ENU
  [e, n, u] = aer2enu (az, el, slantrange, angleUnit);
  %% Rotating ENU to ECEF
  [dx, dy, dz] = enu2uvw (e, n, u, lat0, lon0, angleUnit);
  %% Origin + offset from origin equals position in ECEF
  x = x0 + dx;
  y = y0 + dy;
  z = z0 + dz;
endfunction
%!test
% [x2, y2, z2] = aer2ecef (33, 70, 1e3, 42, -82, 200);
% assert ([x2, y2, z2], [660.930e3, -4701.424e3, 4246.579e3], 10e-6)
% [x3, y3, z3] = aer2ecef ( 0.575958653158129, 1.22173047639603, 1e3, 0.733038285837618, -1.43116998663535, 200, "", "rad");
% assert ([x3, y3, z3], [660.93019e3, -4701.42422e3, 4246.5796e3],10e-3)
%!error <numeric> aer2ecef("s", 25, 1e3, 0, 0, 0)
%!error <numeric> aer2ecef(3i, 25, 1e3, 0, 0, 0)
%!error <numeric> aer2ecef(33, "s", 1e3, 0, 0, 0)
%!error <numeric> aer2ecef(33, 3i, 1e3, 0, 0, 0)
%!error <numeric> aer2ecef(33, 25, "s", 0, 0, 0)
%!error <numeric> aer2ecef(33, 25, 3i, 0, 0, 0)
%!error <numeric> aer2ecef(33, 25, 1e3, "s", 0, 0)
%!error <numeric> aer2ecef(33, 25, 1e3, 3i, 0, 0)
%!error <numeric> aer2ecef(33, 25, 1e3, 0, "s", 0)
%!error <numeric> aer2ecef(33, 25, 1e3, 0, 3i, 0)
%!error <numeric> aer2ecef(33, 25, 1e3, 0, 0, "s")
%!error <numeric> aer2ecef(33, 25, 1e3, 0, 0, 3i)
%!error <non-matching> aer2ecef ([1 1], [2 2]', [3 3], 4, 5, 6)
%!error <non-matching> aer2ecef ([1 1], [2 2], [33], 4, 5, 6)
%!error <non-matching> aer2ecef ([1 1], [2 2], [3 3], [4 4], 5, 6)
%!error <non-matching> aer2ecef ([1 1], [2 2], [3 3], 4, [5 5], 6)
%!error <non-matching> aer2ecef ([1 1], [2 2], [3 3], [4; 4], [5; 5], [6; 6])
 |