1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
## Copyright (C) 2014-2022 Carnë Draug <carandraug@octave.org>
## Copyright (C) 2024-2025 The Octave Project Developers
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} degrees2dms (@var{deg})
## Convert decimal degrees into degrees, minutes, and seconds components.
##
## degrees2dms separates the fractional part of angles and converts them into
## minutes and seconds. The degree values are converted into decimal degrees.
##
## Input can be a real-valued scalar or column vector. Row vectors are
## accepted as well but will be transposed before processing.
##
## The output comprises a nx3 matrix of double. Each output row corresponds to one
## angle of the input vector: the first and second columns are the degree and
## minute components, respectively (both integers), and the third to the
## seconds (which may have a fractional part). The minutes and seconds always
## have magnitudes less than 60. The signs of output components not after a
## nonzero output component match the sign of the input, and any other output
## components have positive sign.
##
## @example
## @group
## degrees2dms (10 + 30/60 + 56.25/3600)
## @result{} [ 10 30 56.25 ]
## @end group
## @end example
##
## The sign of the first nonzero output component matches the sign of
## the input, and the other output components are not less than zero.
##
## @example
## @group
## angles = [ 10.5
## -10.5
## -0.5
## 0.5 ];
## degrees2dms (angles)
## @result{}
## 10 30 0
## -10 30 0
## 0 -30 0
## 0 30 0
## @end group
## @end example
##
## @seealso{degrees2dm, dm2degrees, dms2degrees}
## @end deftypefn
## Author: Carnë Draug <carandraug@octave.org>
function dms = degrees2dms (deg)
if (nargin != 1)
print_usage ();
endif
if (! isreal (deg))
error ("degrees2dms: input must be a non-complex matrix or scalar");
endif
if (! iscolumn (deg))
warning ("Octave:array-to-vector",
"degrees2dms: DEG reshaped into column vector");
endif
if (isinteger (deg))
## If the angles are integers, there is no decimal part
## so this is easy. Also, class must be conserved.
dms = [ deg(:) zeros(numel (deg), 2, class (deg)) ];
elseif (ischar (deg) || islogical (deg))
## Handle like integer types except convert to double.
dms = [ double(deg(:)) zeros(numel (deg), 2) ];
elseif (isa (deg, "double") || isa (deg, "single"))
## Compute output intended to match that of MATLAB R2023b.
## Accuracy is good, but not best possible.
## Separate sign and magnitude.
negative = signbit (deg)(:);
a = abs (deg)(:);
## Compute output component magnitudes.
d = fix (a);
d_fractional_part = a - d;
m_with_fractional_part = d_fractional_part * 60;
m = fix (m_with_fractional_part);
m_fractional_part = m_with_fractional_part - m;
s = m_fractional_part * 60;
## Apply input sign to output components not after a nonzero component.
d(negative) .*= -1;
m(negative & (d == 0)) .*= -1;
s(negative & (d == 0) & (m == 0)) .*= -1;
dms = [d m s];
else
error ("degrees2dms: input class not supported");
endif
endfunction
%!test
%! warning ("error", "Octave:array-to-vector", "local")
%! got_warn = false;
%! try
%! degrees2dms ([1 2]);
%! catch
%! got_warn = true;
%! end_try_catch
%! assert (got_warn, true)
%!error <non-complex> degrees2dms (1 + 2i)
%!assert (degrees2dms ("f"), [102 0 0])
%!assert (degrees2dms ("fm"), [102 0 0; 109 0 0])
%!assert (degrees2dms (true), [1 0 0])
%!assert (degrees2dms ([true false]), [1 0 0; 0 0 0])
%!assert (degrees2dms (uint8 ([5 48 9]')), uint8 ([5 0 0; 48 0 0; 9 0 0]))
%!assert (degrees2dms (10 + 30/60 + 56.25/3600), [10 30 56.25])
%!assert (degrees2dms ([-10.5; -0.5]), [-10 30 0; 0 -30 0])
%!assert (degrees2dms (realmax ()), [realmax() 0 0])
%!assert (degrees2dms (realmax ("single")), [realmax("single") 0 0])
%!assert (degrees2dms (Inf), [Inf NaN NaN]);
%!assert (degrees2dms (-Inf), [-Inf NaN NaN]);
%!assert (degrees2dms (NaN), [NaN NaN NaN])
%!assert (degrees2dms (NA), [NA NA NA])
%!assert (degrees2dms ([]), zeros (0, 3))
## Test near realmin and sixtieths of degrees.
%!test
%! x = 0:600;
%! for c = [true, false]
%! if (c)
%! x = single(x);
%! endif
%! y = x ./ 60;
%! y = [y realmin(class (x))];
%! n = 200;
%! deg = y + [eps(y - eps (y)) .* ((-n):0) .'; eps(y) .* (1:n).'];
%! deg = deg(deg >= 0);
%! deg = [deg; -deg];
%!
%! deg_i = fix (deg);
%! deg_f = deg - deg_i;
%! abs_deg = abs (deg);
%! abs_deg_f = abs (deg_f);
%! inv_deg = 1 ./ deg;
%!
%! dms = degrees2dms (deg);
%! d = dms(:, 1);
%! m = dms(:, 2);
%! s = dms(:, 3);
%! abs_d = abs (d);
%! abs_m = abs (m);
%! abs_s = abs (s);
%! inv_d = 1 ./ d;
%! inv_m = 1 ./ m;
%! inv_s = 1 ./ s;
%!
%! assert (d, fix (d));
%! assert (m, fix (m));
%! assert (abs_m < 60);
%! assert (abs_s < 60);
%!
%! ## Verify signs match documentation.
%! assert ( ...
%! ((deg >= 0) & (d >= 0) & (m >= 0) & (s >= 0)) | ...
%! ((deg < 0) & (d < 0) & (m >= 0) & (s >= 0)) | ...
%! ((deg < 0) & (d == 0) & (m < 0) & (s >= 0)) | ...
%! ((deg < 0) & (d == 0) & (m == 0) & (s < 0)) ...
%! );
%!
%! ## Verify signs (including of zeros) match MATLAB R2023b.
%! assert ( ...
%! ((inv_deg > 0) & (inv_d > 0 ) & (inv_m > 0 ) & (inv_s > 0)) | ...
%! ((inv_deg < 0) & ( d < 0 ) & (inv_m > 0 ) & (inv_s > 0)) | ...
%! ((inv_deg < 0) & (inv_d == -Inf) & ( m < 0 ) & (inv_s > 0)) | ...
%! ((inv_deg < 0) & (inv_d == -Inf) & (inv_m == -Inf) & (inv_s < 0)) ...
%! );
%!
%! ## Check accuracy.
%! ## Note that a non-zero tolerance is necessary for the round-trip tests,
%! ## so this approach only verifies approximate correctness.
%! assert (d, deg_i);
%! assert (abs_s ./ 3600 + abs_m ./ 60, abs_deg_f, eps (abs_deg_f));
%! assert (abs_s ./ 3600 + abs_m ./ 60 + abs_d, abs_deg, eps (abs_deg));
%!
%! ## Verify minutes and seconds do not depend on integer part of input.
%! assert (abs (dms(:, 2:3)), abs (degrees2dms (deg_f)(:, 2:3)));
%! endfor
|