File: distance.m

package info (click to toggle)
octave-mapping 1.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,132 kB
  • sloc: objc: 1,860; python: 438; cpp: 219; makefile: 87; xml: 37; sh: 4
file content (150 lines) | stat: -rw-r--r-- 5,013 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
## Copyright (C) 2004-2025 Andrew Collier <abcollier@users.sourceforge.net>
## Copyright (C) 2011-2025 Alexander Barth <abarth93@users.sourceforge.net>
## Copyright (C) 2019-2025 Philip Nienhuis <prnienhuis@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File}  {} [@var{dist}, @var{az}] = distance(@var{pt1}, @var{pt2})
## @deftypefnx {Function File} {} [@var{dist}, @var{az}] = distance(@var{pt1}, @var{pt2},@var{units})
## @deftypefnx {Function File} {} [@var{dist}, @var{az}] = distance(@var{lat1}, @var{lon1}, @var{lat2}, @var{lon2})
## @deftypefnx {Function File} {} [@var{dist}, @var{az}] = distance(@var{lat1}, @var{lon1}, @var{lat2}, @var{lon2}, @var{units})
##
## Calculates the great circle distance @var{dist} between @var{pt1} and
## @var{pt2} and optionally the azimuth @var{az}.
##
## @var{pt1} and @var{pt2} are two-column matrices of the form
## [latitude longitude].
## The coordinates can also be given by the parameters @var{lat1}, @var{lon1},
## @var{lat2} and @var{lon2}.
## Units can be either "degrees" (the default) or "radians", just the first
## character(s) will do.
##
## @example
## >> distance ([37, -76], [37, -9])
## ans = 52.309
## >> distance ([37, -76], [67, -76])
## ans = 30.000
## >> distance (0, 0, 0, pi, "radians")
## ans = 3.1416
## @end example
##
## @seealso{azimuth, elevation, geodeticarc}
## @end deftypefn

## Author: Andrew Collier <abcollier@users.sourceforge.net>
## Adapted-by: Alexander Barth <abarth93@users.sourceforge.net>

## Uses "spherical cosine formula" for distances > 25-40 degrees,
##  "haversine formula" for smaller distances.

function [dist, az] = distance (varargin)

  ## default units are degrees
  units = "degrees";
  luni = numel (units);

  [reg, prop] = parseparams (varargin);

  if (length (reg) == 2)
    pt1 = reg{1};
    pt2 = reg{2};

    if (size (pt1, 2) < 2 || size (pt2, 2) < 2)
      print_usage ();
    endif
    a = pt1(:, 1);
    b = pt2(:, 1);
    C = pt2(:, 2) - pt1(:, 2);
  elseif (length (reg) == 4)
    a = reg{1};
    b = reg{3};
    C = reg{4} - reg{2};
  else
     error ("distance: wrong number or type of arguments");
  endif

  if (length (prop) == 1)
    units = prop{1};
    luni = numel (units);

    if (! strncmpi (units, "degrees", luni) && ! strncmpi (units, "radians", luni))
      error ("distance: only degrees and radians are allowed as units");
    endif
  elseif (length(prop) > 1)
    error ("distance: wrong number or type of arguments");
  endif

  if (strcmp (units, "degrees"))
    a = deg2rad (a);
    b = deg2rad (b);
    C = deg2rad (C);
  endif

  id =  abs (a - b) < 0.4 & abs (C) < 0.4;
  ## Plain spherical cosine formula
  dist(! id) = acos (sin (b(! id)) .* sin (a(! id)) + ...
               cos (b(! id)) .* cos (a(! id)) .* cos (C(! id)));
  ## Haversine formula for small distances
  dist(id) = 2 * asin (sqrt ((sin ((b(id) - a(id)) / 2)) .^ 2 + ...
             cos (b(id)) .* cos (a(id)) .* sin (C(id) / 2) .^ 2));

  if (strncmpi (units, "degrees", luni))
     dist = rad2deg (dist);
  endif

  if (nargout == 2)
    az = atan2 (sin(C), cos (a) .* tan (b) - sin (a) .* cos (C));

    ## bring the angle in the interval [0..2*pi]
    az = mod (az, 2 * pi);

    ## convert to degrees if desired
    if (strncmpi (units, "degrees", luni))
       az = rad2deg (az);
    endif
  endif

endfunction


%!test
%!error <Invalid>, distance (1, 2)
%!error <wrong number>, distance (1, 2, 3)
%!error <wrong number>, distance (1, 2, 3, 4, 5)
%!error <Invalid>, distance ([1, 2], 3)
%!error <Invalid>, distance (1, 2, "k")
%!error <wrong number>, distance (1, 2, 3, 4, 5, 6)

%!test
%! assert (distance ([37, -76], [37, -9]), 52.30942093, 1e-7)

%!test ## Very small distances, haversine formula
%! assert (distance (0, 0, 0, 1e-8), 1e-8, eps);

%!test ## Intermediate distance, check continuity around distance close to
%!     ## cross-over point hav-cos at 0.4 radians (~ 22.89 - 22.93 degrees)
%! lat1 = 22.89 : 0.01 : 22.93;
%! lon1 = lat2 = lon2 = zeros (1, 5);
%! assert (distance (deg2rad (lat1), lon1, lat2, lon2, "rad"), deg2rad (lat1), 2*eps);

%!test ## Very large distance, spherical cosine formula. Sph.cos. degenerates
%!     ## the least there
%! assert (distance (-90, 0, 89.999999, 0), 179.999999, 1e-6);

%!test
%! [d, az] = distance (0, 0, 0, pi, "radians");
%! assert (d, pi, 1e-7)
%! assert (az, pi / 2, 1e-7)