1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
## Copyright (C) 2018-2022 Philip Nienhuis
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{lat}, @var{lon}, @var{alt} =} ecef2geodetic (@var{spheroid}, @var{X}, @var{Y}, @var{Z})
## @deftypefnx {Function File} {@var{lat}, @var{lon}, @var{alt} =} ecef2geodetic (@var{X}, @var{Y}, @var{Z})
## @deftypefnx {Function File} {@var{lat}, @var{lon}, @var{alt} =} ecef2geodetic (@dots{}, @var{angleUnit})
## @deftypefnx {Function File} {@var{lat}, @var{lon}, @var{alt} =} ecef2geodetic (@var{X}, @var{Y}, @var{Z}, @var{spheroid})
## Convert from Earth Centered Earth Fixed (ECEF) coordinates to geodetic
## coordinates.
##
## Inputs:
## @itemize
## @item
## @var{spheroid} can be a referenceEllipsoid name or struct (see help for
## referenceEllipsoid.m). Unfortunately an EPSG number as first argument
## input as a numeric value cannot be accepted UNLESS ecef2geodetic is called
## with five (5) input arguments. Rather input the number as a character string
## (between quotes). If omitted or if an empty string or empty array ('[]')
## is supplied the WGS84 ellipsoid (EPSG 7030) will be selected.
##
## Inputting @var{spheroid} as 4th argument is accepted but not recommended;
## in that case the @var{lat} and @var{lon} outputs are returned in radians.
##
## @item
## @var{X}, @var{Y} and @var{Z} (length) are Earth-Centered Earth Fixed
## coordinates. They can be scalars, vectors or matrices but they must all
## have the same size and dimensions. Their length unit is that of the used
## reference ellipsoid, whose default is meters.
## @end itemize
##
## Outputs:
## @itemize
## @item
## @var{lat}, @var{lon}, @var{alt}: geodetic coordinates (angle, angle, length).
## The default output is in degrees unless @var{spheroid} is specified as 4th
## argument (see above), or if "radians" is specified for optional last
## argument @var{angleUnit}. The geodetic height's (@var{alt}) length unit
## equals that of the used reference ellipsoid, whose default is meters. The
## size and dimension(s) of @var{lat}, @var{lon} and @var{alt} are the same
## as @var{X}, @var{Y} and @var{Z}.
##
## Note: height is relative to the reference ellipsoid, not the geoid. Use
## e.g., egm96geoid to compute the height difference between the geoid and
## the WGS84 reference ellipsoid.
## @end itemize
##
## Example:
## @example
## Aalborg GPS Centre
## X = 3426949.39675307
## Y = 601195.852419885
## Z = 5327723.99358255
## lat = 57.02929569;
## lon = 9.950248114;
## h = 56.95; # meters
##
## >> [lat, lon, alt] = geodetic2ecef ("", X, Y, Z)
## lat = 57.029
## lon = 9.9502
## alt = 56.95
## @end example
##
## @seealso{geodetic2ecef, ecef2aer, ecef2enu, ecef2enuv,ecef2ned, ecef2nedv,
## egm96geoid, referenceEllipsoid}
## @end deftypefn
## Function supplied by anonymous contributor, see:
## https://savannah.gnu.org/patch/index.php?9658
function [lat, lon, alt] = ecef2geodetic (varargin)
## ip = XYZ offset into varargin
ip = 0;
spheroid = "";
angleUnit = "degrees";
if (nargin < 3 || nargin > 5)
print_usage ();
elseif (nargin == 3)
## Only XYZ input expected
spheroid = "wgs84";
elseif (nargin == 4)
## Sort out if arg.#1 or arg.#4 is a spheroid, or arg.#4 an angleUnit
if (isstruct (varargin{1}) || ischar (varargin{1}))
## Assume arg #1 = spheroid
spheroid = varargin{1};
ip = 1;
elseif (isstruct (varargin{4}))
## Assume arg #4 = spheroid
spheroid = varargin{4};
elseif (ischar (varargin{4}))
if (ismember (varargin{4}(1), {"r", "d"}))
## Assume arg #4 = angleunit
angleUnit = varargin{4};
spheroid = "wgs84";
else
spheroid = varargin{4};
endif
endif
elseif (nargin == 5)
ip = 1;
spheroid = varargin{1};
if (isnumeric (spheroid))
spheroid = num2str (spheroid);
endif
angleUnit = varargin{5};
endif
X = varargin{ip + 1};
Y = varargin{ip + 2};
Z = varargin{ip + 3};
if (! isnumeric (X) || ! isreal (X) || ...
! isnumeric (Y) || ! isreal (Y) || ...
! isnumeric (Z) || ! isreal (Z))
error ("ecef2geodetic : numeric input expected");
endif
if (! all (size (X) == size (Y)) || ! all (size (Y) == size (Z)))
error ("enu2geodetic: non-matching dimensions of ECEF inputs.");
endif
if (! ischar (angleUnit) || ! ismember (lower (angleUnit(1)), {"d", "r"}))
error ("ecef2geodetic: angleUnit should be one of 'degrees' or 'radians'")
endif
E = sph_chk (spheroid);
## Insight from: http://wiki.gis.com/wiki/index.php/Geodetic_system
lon = atan2 (Y, X);
ecc = E.Eccentricity;
e_sq = ecc ^ 2;
ep_2 = e_sq / (1 - e_sq) ; ## This is (e')^2
r = hypot (X, Y);
E2 = E.SemimajorAxis ^ 2 - E.SemiminorAxis ^ 2;
F = 54 * E.SemiminorAxis .^ 2 * Z .^ 2;
G = r .^ 2 + (1 - e_sq) * Z .^ 2 - e_sq * E2;
C = (ecc .^ 4 .* F .* r .^ 2) ./ (G .^ 3);
S = (1 + C + sqrt (C .^ 2 + 2 .* C)) .^ (1 / 3);
P = F ./ (3 .* (S + 1 ./ S + 1) .^ 2 .* G .^ 2);
Q = sqrt (1 + 2 * ecc .^ 4 * P);
r0 = -(P * e_sq .* r) ./ (1 + Q) + ...
sqrt (.5 * E.SemimajorAxis .^ 2 * (1 + 1 ./ Q) - ...
(P .* (1 - e_sq) .* Z .^ 2) ./ (Q .^ 2 + Q) - .5 * P .* r .^ 2);
U = sqrt ((r - e_sq .* r0) .^ 2 + Z .^ 2);
V = sqrt (( r - e_sq .* r0) .^ 2 + (1 - e_sq) .* Z .^ 2);
Frac = E.SemiminorAxis .^ 2 ./ (E.SemimajorAxis * V);
Z0 = Frac .* Z;
alt = U .* (1 - Frac);
lat = atan2 ((Z + ep_2 .* Z0), r) ;
if ( strncmpi (lower (angleUnit), "d", 1) == 1 )
lon = rad2deg (lon);
lat = rad2deg (lat);
endif
endfunction
%!shared X, Y, Z
%! X = 3426949.397;
%! Y = 601195.852;
%! Z = 5327723.994; ## meters
%!test
%! [latd, lond, h] = ecef2geodetic ("wgs84", X, Y, Z);
%! assert ([latd, lond, h], [57.02929569, 9.950248114, 56.95], 10e-3);
%!test
%! [latd, lond, h] = ecef2geodetic (X, Y, Z);
%! assert ([latd, lond, h], [57.02929569, 9.950248114, 56.95], 10e-3);
%!test
%! latr = deg2rad (57.02929569);
%! lonr = deg2rad (9.950248114);
%! [lat, lon, h2] = ecef2geodetic ("wgs84", X, Y, Z, "radians");
%! assert ([lat, lon, h2], [latr, lonr, 56.95], 10e-3);
%!test
%! latr = deg2rad (57.02929569);
%! lonr = deg2rad (9.950248114);
%! [lat, lon, h2] = ecef2geodetic (X, Y, Z, "radians");
%! assert ([lat, lon, h2], [latr, lonr, 56.95], 10e-3);
%!error <angleUnit> ecef2geodetic ("", 4500000, 450000, 50000000, "km")
%!error <numeric input expected> ecef2geodetic ("", "A", 450000, 50000000)
%!error <numeric input expected> ecef2geodetic ("", 45i, 450000, 50000000)
%!error <numeric input expected> ecef2geodetic ("", 4500000, "B", 50000000)
%!error <numeric input expected> ecef2geodetic ("", 4500000, 45i, 50000000)
%!error <numeric input expected> ecef2geodetic ("", 4500000, 450000, "C")
%!error <numeric input expected> ecef2geodetic (4500000, 450000, "C")
%!error <numeric input expected> ecef2geodetic ("", 4500000, 450000, 50i)
%!error <numeric input expected> ecef2geodetic (4500000, 450000, 50i)
|