1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
## Copyright (C) 2022 The Octave Project Developers
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{lat}, @var{lon} =} gcxgc (@var{lat1}, @var{lon1}, @var{az1}, @var{lat2}, @var{lon2}, @var{az2})
## @deftypefnx {} {@var{lat}, @var{lon} =} gcxgc (@var{lat1}, @var{lon1}, @var{az1}, @var{lat2}, @var{lon2}, @var{az2}, @var{angleUnit})
## @deftypefnx {} {@var{lat}, @var{lon}, @var{idl} =} gcxgc (@dots{})
## @deftypefnx {} {@var{latlon} =} gcxgc (@dots{})
## Determines the intersection points between two great circles.
##
## Input:
## @itemize
## @item
## @var{lat1}, @var{lon1}, @var{az1}: latitude, longitude, and azimuth of
## great circle #1. These must be scalar values or vectors of equal length.
##
## @item
## @var{lat2}, @var{lon2}, @var{az2}: latitude, longitude, and azimuth of
## great circle #2. These must be scalar values or vectors of equal length.
##
## @item
## @var{angleUnit}: string for angular units ('degrees' or 'radians',
## case-insensitive, just the first character will do). Default is 'degrees'.
## @var{angleUnit} applies to all inputs and outputs.
## @end itemize
##
## Output: @*
## The shape of the output depends on the number of requested outputs.
##
## @itemize
## @item
## If two outputs were requested:
## If scalar values have been input, @var{lat} and @var{lon} are both 1x2
## vectors. If vectors have been input @var{lat} and @var{lon} are Nx2 arrays
## where N is the number of great circle pairs. The results for multiple
## great circle pairs are concatenated vertically no matter the orientation of
## input vectors.
##
## @item
## If just one output was requested, the @var{lat} and @var{lon} values are
## concatenated into an Nx4 array, where N is 1 in case of scalar inputs and
## in case in input vector(s) N is the size of them.
##
## @item
## If three outputs were requested the first two output are @var{lat} and
## @var{lon}, third output @var{st} lists pairs of coinciding great circles,
## if any. In this case warnings for coinciding circles are suppressed.
## @end itemize
##
## Example:
## @example
## lat1 = 51.8853;
## lon1 = 0.2545;
## az1 = 108.55;
## lat2 = 49.0034;
## lon2 = 2.5735;
## az2 = 32.44;
## [newlat, newlon] = gcxgc (lat1, lon1, az1, lat2, lon2, az2)
## newlat =
## 50.908 -50.908
## newlon =
## 4.5086 -175.4914
## @end example
## @end deftypefn
function [lat, lon, idl] = gcxgc (varargin)
if (nargin < 6)
print_usage();
elseif (nargin == 6)
angleUnit = "degrees";
else
angleUnit = varargin{7};
endif
if (! (all (cellfun ("isnumeric", varargin(1:6)) && ...
all (cellfun ("isreal", varargin(1:6))))))
error ("gcxgc: numeric values expected for first six inputs");
endif
isv = ! cellfun ("isscalar", varargin(1:6));
if (any (isv))
## At least one of the location inputs is a vector. Check sizes
numval = cellfun ("numel", varargin(isv));
if (any (diff (numval)))
error ("gcxgc: all vector inputs must have same lengths");
endif
nv = numval(1);
## Make sure all inputs are column vectors of same length
for ii=1:6
if (isv(ii))
varargin(ii) = {varargin{ii}(:)};
else
varargin(ii) = {(repmat (varargin{ii}, numval(1), 1))};
endif
endfor
else
nv = 1;
endif
vect = [varargin{1:6}];
if (! ischar (angleUnit))
error ("gcxgc: character value expected for 'angleUnit'");
elseif (strncmpi (angleUnit, "degrees", min (length (angleUnit), 7)))
## Latitude must be within (-90, 90) as azimuth isn't defined there
if (any (abs (vect(:, [1 4])) >= 90))
error("gcxgc: azimuth value(s) out of acceptable range (-90, 90)")
endif
vect = deg2rad (vect);
elseif (strncmpi (angleUnit, "radians", min (length (angleUnit), 7)))
## Latitude must be within (-pi/2, pi/2) as azimuth isn't defined there
if (any (abs (vect(:, [1 4])) >= pi / 2))
error("gcxgc: azimuth value(s) out of acceptable range (-pi/2, pi/2)")
endif
else
error ("gcxgc: illegal input for 'angleUnit'");
endif
[lat, lon] = get_intscs (vect);
## Check for coinciding great circles. Done by comparing Longitudes where
## they cross the equator.
## 1. Find circles with azimuth = lat == 0 (as those ARE on equator)
iaz0 = double (abs (rem (vect(:, [3 6]) + pi/2, pi)) < 2 * eps & ...
abs (vect(:, [1 4])) < 2 * eps);
iaz0 = (iaz0(1:nv) + iaz0(nv+1:end))'; # Sum iaz0 by rows
## vect(iaz0==2, :) => two great circles equaling equators => set to NaN & skip
lat(iaz0 > 1.5, :) = NaN;
lon(iaz0 > 1.5, :) = NaN;
## vect(iaz0==1, :) => just one circle = equator => no coinciding pair => skip too
nv -= numel (find (iaz0 > 0));
iazx = find (! iaz0);
## 2. Intersections with equator for all other pairs
[~, loni1] = ...
get_intscs ([(zeros (nv, 2)), (pi / 2 * ones (nv, 1)), vect(iazx, 1:3)]);
[~, loni2] = ...
get_intscs ([(zeros (nv, 2)), (pi / 2 * ones (nv, 1)), vect(iazx, 4:6)]);
## Just comparing longitudes of intersections on one hemisphere, plus
## azimuth values will do.
## 3. First select those
id1 = loni1(:, 1) <= 0;
loni1(id1, 1) = loni1(id1, 2);
id2 = loni2(:, 1) <= 0;
loni2(id2, 1) = loni2(id2, 2);
## 4. Find out which loni's coincide
idl = (abs (loni1(:, 1) - loni2(:, 1)) < 2 * eps)(:, 1) & abs (id1 - id2);
## 5. Set output relating to coinciding great circles to NaN, NaN
lat(iazx(idl), :) = NaN;
lon(iazx(idl), :) = NaN;
idl = sort ([(find (iaz0 > 1.5)) iazx(find (idl))]);
if (nargout < 3)
if (! isempty (idl))
warning ("Octave:coinciding-great-circles", ...
"gcxgc: non-unique intersection(s).\n")
endif
endif
if (strncmpi (angleUnit, "degrees", length (angleUnit)))
lat = rad2deg (lat);
lon = rad2deg (lon);
endif
if (nargout <= 1)
lat = [lat lon];
endif
endfunction
function [lat, lon] = get_intscs (vect)
## Algorithm from https://www.movable-type.co.uk/scripts/latlong-vectors.html#intersection
c1(:, 1) = sin (vect(:, 2)) .* cos (vect(:, 3)) - sin (vect(:, 1)) .* ...
cos (vect(:, 2)) .* sin (vect(:, 3));
c1(:, 2) = -cos (vect(:, 2)) .* cos (vect(:, 3)) - sin (vect(:, 1)) .* ...
sin (vect(:, 2)) .* sin (vect(:, 3));
c1(:, 3) = cos (vect(:, 1)) .* sin (vect(:, 3));
c2(:, 1) = sin (vect(:, 5)) .* cos (vect(:, 6)) - sin (vect(:, 4)) .* ...
cos (vect(:, 5)) .* sin (vect(:, 6));
c2(:, 2) = -cos (vect(:, 5)) .* cos (vect(:, 6)) - sin (vect(:, 4)) .* ...
sin (vect(:, 5)) .* sin (vect(:, 6));
c2(:, 3) = cos (vect(:, 4)) .* sin (vect(:, 6));
N = cross (c1, c2, 2);
lat3 = atan2 (N(:, 3), hypot (N(:, 1), N(:, 2)));
if (sind (rad2deg (vect(:, 3))) == 0 && sind (rad2deg (vect(:, 6))) == 0)
## Note: use sind because sin (pi) != 0
lon3 = zeros (size (vect, 1));
else
lon3 = atan2 (N(:, 2), N(:, 1));
endif
[alat3 alon3] = antipode (lat3, lon3, "r");
lat = [lat3 alat3];
lon = [lon3 alon3];
endfunction
%!test
%! [lat3, lon3] = gcxgc ( 51.8853, 0.2545, 108.55, 49.0034, 2.5735, 32.44);
%! assert (degrees2dms (lat3(1)), [50 54 27.387002], 10e-5);
%! assert (degrees2dms (lon3(1)), [04 30 30.868724], 10e-5);
%!test
%! [lat3, lon3] = gcxgc (20, -5, 45, 30, 5, 15);
%! assert (lat3(1), 28.062035, 10e-5);
%! assert (lon3(1), 4.4120504, 10e-5);
%!test
%! latlon = gcxgc (45, 45, 90, 0, 0, 90);
%! assert (latlon, [0, 0, 135, -45], 10e-10);
%!test
%! warning ("off", "Octave:coinciding-great-circles");
%! [~, ~, idl] = gcxgc (45, [0:45:360], 45, -45, -135, -45);
%! warning ("on", "Octave:coinciding-great-circles");
%! assert (idl, 2, 1e-10);
## Watch out, state of warnings and errors ignored (as usual in BIST tests)
%!warning <non-unique> gcxgc (0, 0, 45, 0, 180, -45);
%!error <numeric> gcxgc ("s", 0, 100, 10, 30, 0)
%!error <numeric> gcxgc (3i, 0, 100, 10, 30, 0)
%!error <numeric> gcxgc (50, "s", 100, 10, 30, 0)
%!error <numeric> gcxgc (50, 2i, 10, 10, 30, 0)
%!error <numeric> gcxgc (50, 0, "s", 10, 30, 0)
%!error <numeric> gcxgc (50, 0, 100i, 10, 30, 0)
%!error <numeric> gcxgc (50, 0, 100, "s", 30, 0)
%!error <numeric> gcxgc (50, 0, 100, 10i, 30, 0)
%!error <numeric> gcxgc (50, 0, 100, 10, "s", 0)
%!error <numeric> gcxgc (50, 0, 100, 10, 30i, 0)
%!error <numeric> gcxgc (50, 0, 100, 10, 30, "s")
%!error <numeric> gcxgc (50, 0, 100, 10, 30, 2i)
%!error <illegal> gcxgc (50, 0, 100, 10, 30, 0, "f")
%!error <illegal> gcxgc (50, 0, 100, 10, 30, 0, "degreef")
%!error <azimuth value> gcxgc (190, 0, 90, -90.000001, 180, 80);
%!error <azimuth value> gcxgc (190, 0, -90.001, -90.000001, 180, 80);
%!error <azimuth value> gcxgc (pi/1.999, 0, pi/2, pi/2.0001, 2, 2*pi/3, "r");
%!error <all vector inputs must> gcxgc ([50 0], 0, 0, 0, 0, [1 2 3])
|