1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
## Copyright (C) 2018-2022 Philip Nienhuis
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{X}, @var{Y}, @var{Z} =} geodetic2ecef (@var{lat}, @var{lon}, @var{alt})
## @deftypefnx {Function File} {@var{X}, @var{Y}, @var{Z} =} geodetic2ecef (@var{spheroid}, @var{lat}, @var{lon}, @var{alt})
## @deftypefnx {Function File} {@var{X}, @var{Y}, @var{Z} =} geodetic2ecef (@dots{}, @var{angleUnit})
## @deftypefnx {Function File} {@var{X}, @var{Y}, @var{Z} =} geodetic2ecef (@var{lat}, @var{lon}, @var{alt}, @var{spheroid})
## Convert from geodetic coordinates to Earth Centered Earth Fixed (ECEF)
## coordinates.
##
## Inputs:
## @itemize
## @item
## @var{spheroid} ia user-specified sheroid (see referenceEllipsoid); it can
## be omitted or given as an ampty string, in which case WGS84 will be the
## default spheroid. Unfortunately EPSG numbers cannot be accepted.
##
## Inputting @var{spheroid} as 4th argument is accepted but not recommended;
## in that case the @var{lat} and @var{lon} inputs are required to be in
## radians.
##
## @item
## @var{lat}, @var{lon} (both angle) and @var{alt} (length) are latitude,
## longitude and height, respectively and can each be scalars. Vectors or
## nD arrays are accepted but must all have the exact same size and
## dimension(s). @var{alt}'s length unit is that of the invoked reference
## ellipsoid, whose default is meters. For the default angle unit see below.
##
## Note: height is relative to the reference ellipsoid, not the geoid. Use
## e.g., egm96geoid to compute the height difference between the geoid and
## the WGS84 reference ellipsoid.
##
## @item
## @var{angleUnit} can be "degrees" (= default) or "radians". The default is
## degrees, unless @var{spheroid} was given as as 4th input argument in which
## case @var{angleUnit} is in radians and cannot be changed.
## @end itemize
##
## Ouputs:
## @itemize
## @item
## The output arguments @var{X}, @var{Y}, @var{Z} (Earth-Centered Earth Fixed
## coordinates) are in the length units of the invoked ellipsoid and have the
## same sizes and dimensions as input arguments @var{lat}, @var{lon} and
## @var{alt}.
## @end itemize
##
## Example:
## @example
## Aalborg GPS Centre
## lat=57.02929569;
## lon=9.950248114;
## h= 56.95; # meters
## >> [X, Y, Z] = geodetic2ecef ("", lat, lon, h)
## X = 3426949.39675307
## Y = 601195.852419885
## Z = 5327723.99358255
## @end example
## @seealso{ecef2geodetic, geodetic2aer, geodetic2enu, geodetic2ned, egm96geoid,
## referenceEllipsoid}
## @end deftypefn
## Function supplied by anonymous contributor, see:
## https://savannah.gnu.org/patch/index.php?9658
function [X, Y, Z] = geodetic2ecef (varargin)
ip = 0;
spheroid = "";
angleUnit = "degrees";
if (nargin < 3 || nargin > 5)
print_usage ();
elseif (nargin == 3)
## Assume just Lat, Lon and Alt given
elseif (nargin == 4)
if (isnumeric (varargin{1}))
## Find out if arg #4 = angleunit or spheroid
if (isnumeric (varargin{4}) || isstruct (varargin{4}))
## Probably EPGS code => spheroid, or a spheroid struct right away
spheroid = varargin{4};
elseif (ischar (varargin{4}))
if (ismember (varargin{4}(1), {"r", "d"}))
## Supposedly an angleUnit
angleUnit = varargin{4};
else
## Can only be name of spheroid
spheroid = varargin{4};
endif
else
error ("geodetic2ecef: spheroid or angleUnit expected for arg. #4");
endif
else
ip = 1;
spheroid = varargin{1};
endif
elseif (nargin == 5)
ip = 1;
spheroid = varargin{1};
angleUnit = varargin{5};
endif
lat = varargin{ip + 1};
lon = varargin{ip + 2};
alt = varargin{ip + 3};
if (! isnumeric (lat) || ! isreal (lat) || ...
! isnumeric (lon) || ! isreal (lon) || ...
! isnumeric (alt) || ! isreal (alt))
error ("geodetic2ecef: numeric real input expected");
endif
if (! all (size (lat) == size (lon)) || ! all (size (lon) == size (alt)))
error ("geodetic2ecef: non-matching dimensions of ECEF inputs.");
endif
if (! ischar (angleUnit) || ! ismember (lower (angleUnit(1)), {"d", "r"}))
error ("geodetic2ecef: angleUnit should be one of 'degrees' or 'radians'")
endif
if (isnumeric (spheroid))
spheroid = num2str (spheroid);
endif
E = sph_chk (spheroid);
if (strncmpi (lower (angleUnit), "r", 1) == 1)
c_p = cos (lat);
s_p = sin (lat);
c_l = cos (lon);
s_l = sin (lon);
else
c_p = cosd (lat);
s_p = sind (lat);
c_l = cosd (lon);
s_l = sind (lon);
endif
## Insight From: Algorithms for Global Positioning pg 42
N = E.SemimajorAxis ./ sqrt (1 - E.Eccentricity ^ 2 * s_p .^ 2);
X = (N + alt) .* (c_p .* c_l) ;
Y = (N + alt) .* (c_p .* s_l) ;
Z = (N .* (1 - E.Flattening) ^ 2 + alt) .* s_p;
endfunction
%!test
%!shared h
%! latd = 57.02929569;
%! lond = 9.950248114;
%! h = 56.95; ## meters
%! [x, y, z]=geodetic2ecef("wgs84", latd, lond, h);
%! assert ([x, y, z], [3426949.397, 601195.852, 5327723.994], 10e-3);
%!test
%! lat = deg2rad (57.02929569);
%! lon = deg2rad (9.950248114);
%! [x2, y2, z2] = geodetic2ecef ("wgs84", lat, lon, h, "radians");
%! assert ([x2, y2, z2], [3426949.397, 601195.852, 5327723.994], 10e-3);
%!error <angleUnit> geodetic2ecef ("", 45, 45, 50, "km")
%!error <numeric real input expected> geodetic2ecef ("", "A", 45, 50)
%!error <numeric real input expected> geodetic2ecef ("", 45i, 45, 50)
%!error <numeric real input expected> geodetic2ecef ("", 45, "B", 50)
%!error <numeric real input expected> geodetic2ecef ("", 45, 45i, 50)
%!error <numeric real input expected> geodetic2ecef ("", 45, 45, "C")
%!error <numeric real input expected> geodetic2ecef ("", 45, 45, 50i)
|