File: geodeticarc.m

package info (click to toggle)
octave-mapping 1.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,132 kB
  • sloc: objc: 1,860; python: 438; cpp: 219; makefile: 87; xml: 37; sh: 4
file content (244 lines) | stat: -rw-r--r-- 9,907 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
## Copyright (C) 2014-2022 Alfredo Foltran <alfoltran@gmail.com>
## Copyright (C) 2021-2022 Philip Nienhuis <prnienhuis@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} @var{dist} = geodeticarc(@var{pt1}, @var{pt2})
## @deftypefnx {Function File} {} @var{dist} = geodeticarc(@var{pt1}, @var{pt2}, @var{ellipsoid})
## @deftypefnx {Function File} {[@var{dist}, @var{az}] = } {geodeticarc(@var{pt1}, @var{pt2})}
## @deftypefnx {Function File} {[@var{dist}, @var{az}] = } {geodeticarc(@var{pt1}, @var{pt2}, @var{ellipsoid})}
## Calculates the distance (in meters) between two (sets of) locations on
## an ellipsoid.
##
## The formula devised by Thaddeus Vincenty (1975) is used with an accurate
## ellipsoidal model of the earth (@var{ellipsoid}). @*
## Note: for antipodal points (within 0.5 degree) Vincenty's formulae are
## known to be inaccurate and may even break down.
##
## Inputs:
##
## @itemize
## @item
## @var{pt1} and @var{pt2} are two-column matrices of the form @*
## [latitude longitude].
## The units for the input coordinates angles must be degrees.
##
## @item
## Optional argument @var{ellipsoid} defines the reference ellipsoid to use.
## The default ellipsoidal model is 'WGS84', which is the globally most
## accurate model.
## @end itemize
##
## Outputs:
##
## @itemize
## @item
## @var{dist} is the computed distance between @var{pt1} and @var{pt2} in
## meters, computed along the shortest geodesic.
##
## @item
## @var{az} is a 2-column array of starting and ending azimuths of the
## geodesics in the direction from @var{pt1} to @var{pt2}, in degrees relative
## to the North (clockwise).
## @end itemize
##
## Examples:
## @example
## >> geodeticarc ([37, -76], [37, -9])
## ans = 5830081.06
## >> geodeticarc ([37, -76], [67, -76], referenceEllipsoid (7019))
## ans = 3337842.87
## @end example
##
## @seealso{distance, geodeticfwd, referenceEllipsoid, vincenty}
## @end deftypefn

function [dist, az] = geodeticarc (varargin)

  if (nargin < 2)
    error ("geodeticarc: too few arguments");
  elseif (! (all (cellfun ("isnumeric", varargin(1:2))) && ...
                  cellfun ("isreal", varargin(1:2))))
    error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
  elseif (nargin == 2)
    ellipsoid = referenceEllipsoid ("wgs84");
  elseif (isstruct (varargin{3}))
    ellipsoid = varargin{3};
  elseif (isnumeric (varargin{3}) && numel (varargin{3}) == 2)
    ## Might be SemimajorAxis and Flattening
    ellipsoid.SemimajorAxis = varargin{3}(1);
    ellipsoid.Flattening    = varargin{3}(2);
    ecc = flat2ecc (varargin{3}(2));
    ellipsoid.SemiminorAxis = minaxis (varargin{3}(1), ecc);
  else
    ellipsoid = referenceEllipsoid (varargin{3});
  endif

  ## Check & process numeric input data sizes
  isnv = ! cellfun ("isvector", varargin(1:2));
  if (any (isnv))
    ## Check dimensions
    cdim = cellfun (@(x) numel (size (x)), varargin(isnv));
    if (any (cdim != 2))
      error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
    endif
    ## Check for proper orientation and expand any scalar args, if required
    for ii=1:2
      vsz = size (varargin{ii});
      if (vsz(2) != 2)                ## orientation
        error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
      else                            ## nr.of points
        npt(ii) = vsz(1);
      endif
    endfor
    if (any (npt > 1))
      if (any (npt == 1))
        varargin{npt == 1} = repmat (varargin{npt == 1}, npt(npt != 1), 1);
      elseif (! (npt(1) - npt(2) == 0))
        error (["geodeticarc: at least one of first 2 inputs must be a 1x2 vector\n" ...
                "              or both must have the same dimensions\n"]);
      endif
    endif
  elseif (! all (cellfun ("isrow", varargin(1:2))))
    error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
  endif

  ## Do the actual work. Based on Alfredo Foltran's vincenty.m
  ## https://github.com/alfoltranteam/octave-map/blob/master/src/vincenty.m
  ## (In turn based on Vicenty.T (1975) Direct and inverse solutions of
  ##  geodesics on the ellipsoid with application of nested equations)

  major = ellipsoid.SemimajorAxis;
  minor = ellipsoid.SemiminorAxis;
  f = ellipsoid.Flattening;
  ## Avoid confusion of length units imposed by ellipsoid, standardize on meters
  if (isfield (ellipsoid, "LengthUnit") && ! isempty (ellipsoid.LengthUnit))
    major *= unitsratio ("meters", ellipsoid.LengthUnit);
    minor *= unitsratio ("meters", ellipsoid.LengthUnit);
  endif

  iter_limit = 20;

  pt1 = deg2rad (varargin{1});
  pt2 = deg2rad (varargin{2});

  [lat1 lng1] = deal (pt1(:, 1), pt1(:, 2));
  [lat2 lng2] = deal (pt2(:, 1), pt2(:, 2));

  delta_lng = lng2 - lng1;

  reduced_lat1 = atan ((1 - f) * tan (lat1));
  reduced_lat2 = atan ((1 - f) * tan (lat2));

  [sin_reduced1 cos_reduced1] = deal (sin (reduced_lat1), cos (reduced_lat1));
  [sin_reduced2 cos_reduced2] = deal (sin (reduced_lat2), cos (reduced_lat2));

  lambda_lng = delta_lng;
  lambda_prime = 2 * pi;

  i = 0;
  ## Keep track of which sigmas have converged
  lit = true (size (lambda_lng));
  dist = NaN (size (lambda_lng));
  ## Preallocate to avoid dimension changes avoid shadowing function "sigma"
  sin_sigma = cos_sigma = sin_alpha = cos_sq_alpha = cos2_sigma_m = C = ...
              gsigma = zeros (size (lambda_lng));
  do
    i++;
    [sin_lambda_lng cos_lambda_lng] = deal (sin (lambda_lng), cos (lambda_lng));
    sin_sigma(lit) = sqrt ((cos_reduced2(lit) .* sin_lambda_lng(lit)) .^ 2 + ...
                           (cos_reduced1(lit) .* sin_reduced2(lit) - ...
                            sin_reduced1(lit) .* cos_reduced2(lit) .* ...
                            cos_lambda_lng(lit)) .^ 2);

    dist(find (abs (sin_sigma < eps))) = 0;
    lit(find (abs (sin_sigma < eps))) = false;

    cos_sigma(lit) = (sin_reduced1(lit) .* sin_reduced2(lit) + ...
                      cos_reduced1(lit) .* cos_reduced2(lit) .* cos_lambda_lng(lit));
    gsigma(lit) = atan2 (sin_sigma(lit), cos_sigma(lit));
    sin_alpha(lit) = (cos_reduced1(lit) .* cos_reduced2(lit) .* ...
                      sin_lambda_lng(lit) ./ sin_sigma(lit));
    cos_sq_alpha(lit) = 1 - sin_alpha(lit) .^ 2;

    if (abs (cos_sq_alpha(lit) > eps))
      cos2_sigma_m(lit) = cos_sigma(lit) - 2 .* (sin_reduced1(lit) ...
                          .* sin_reduced2(lit) ./ cos_sq_alpha(lit));
    else
      cos2_sigma_m(lit) = 0.0;                       ## Equatorial line
    endif

    C(lit) = f / 16.0 * cos_sq_alpha(lit) .* (4 + f * (4 - 3 * cos_sq_alpha(lit)));

    lambda_prime = lambda_lng;
    lambda_lng(lit) = (delta_lng(lit) + (1 - C(lit)) * f .* sin_alpha(lit) .* (gsigma(lit) + ...
                  C(lit) .* sin_sigma(lit) .* (cos2_sigma_m(lit) + C(lit) .* cos_sigma(lit) .* ...
                  (-1 + 2 * cos2_sigma_m(lit) .^ 2))));
    ## Which inputs haven't converged yet
    lit(lit) = abs (lambda_lng(lit) - lambda_prime(lit)) > 10e-12 | abs (sin_sigma(lit) < eps);
    ## printf ("%2d ", i, lit); printf ("\n");  ## Debug, remove when tested
  until (all (! lit) || i > iter_limit);

  if (i > iter_limit)
    warning ("Inverse vincenty's formulae failed to converge for some inputs!");
    sin_sigma(lit) = NaN;
  endif

  u_sq = cos_sq_alpha .* (major ^ 2 - minor ^ 2) / minor ^ 2;
  A = 1 + u_sq ./ 16384.0 .* (4096 + u_sq .* (-768 + u_sq .* (320 - 175 * u_sq)));
  B = u_sq ./ 1024.0 .* (256 + u_sq .* (-128 + u_sq .* (74 - 47 .* u_sq)));
  delta_sigma = (B .* sin_sigma .* (cos2_sigma_m + B / 4 .* (cos_sigma .* ...
                (-1 + 2 * cos2_sigma_m .^ 2) - B / 6 .* cos2_sigma_m .* ...
                (-3 + 4 * sin_sigma .^ 2) .* (-3 + 4 * cos2_sigma_m .^ 2))));
  dist(isnan (dist)) = (minor * A .* (gsigma - delta_sigma))(isnan (dist));

  if (nargout() > 1)
    alpha1 = atan2 (cos_reduced2 .* sin_lambda_lng, ...
                    cos_reduced1 .* sin_reduced2 - sin_reduced1 .* ...
                    cos_reduced2 .* cos_lambda_lng);
    alpha2 = atan2 (cos_reduced1 .* sin_lambda_lng, ...
                    -sin_reduced1 .* cos_reduced2 + cos_reduced1 .* ...
                    sin_reduced2 .* cos_lambda_lng);
    az = rad2deg ([alpha1 alpha2]);
  endif

endfunction


%!demo
%! lgts = geodeticarc ([[0:1:89]', zeros(90, 1)], [[1:1:90]', zeros(90, 1)]) / 60;
%! plot (0:89, lgts);
%! axis tight;
%! grid on;
%! hold on;
%! plot ([0 89], [1852 1852], "k", "linestyle", "-.");
%! plot ([45 45], [min(lgts) max(lgts)], "m", "linestyle", "-.");
%! title ("Arcminute length vs. Latitude");
%! xlabel ("Latitude (degrees)", "FontWeight", "bold");
%! ylabel ("Arcminute length (m)", "FontWeight", "bold");
%! text (5, 1852.5, "Nautical mile (1852 m)");


%!error <should be real numeric nx2> geodeticarc ("a", [0 0]);
%!error <should be real numeric nx2> geodeticarc ([0 0], [1; 1]);
%!error <should be real numeric nx2> geodeticarc ([0 0; 0 0; 0 0], [1; 1]);
%!error <should be real numeric nx2> geodeticarc ([1 2 3; 2 2 2], [0 0]);
%!error <at least one> geodeticarc ([1 3 2; 2 2 2]', [0 0; 5 6])

%!test
%! [dst, az] = geodeticarc ([37, -76], [37, -9; 67 -76; 37, -76]);
%! assert (dst, [5830081.06; 3337842.871; 0], 1e-2);
%! assert (mean (az'), [90, 0, 0,], 1e-7);