1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
## Copyright (C) 2014-2022 Alfredo Foltran <alfoltran@gmail.com>
## Copyright (C) 2021-2022 Philip Nienhuis <prnienhuis@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} @var{dist} = geodeticarc(@var{pt1}, @var{pt2})
## @deftypefnx {Function File} {} @var{dist} = geodeticarc(@var{pt1}, @var{pt2}, @var{ellipsoid})
## @deftypefnx {Function File} {[@var{dist}, @var{az}] = } {geodeticarc(@var{pt1}, @var{pt2})}
## @deftypefnx {Function File} {[@var{dist}, @var{az}] = } {geodeticarc(@var{pt1}, @var{pt2}, @var{ellipsoid})}
## Calculates the distance (in meters) between two (sets of) locations on
## an ellipsoid.
##
## The formula devised by Thaddeus Vincenty (1975) is used with an accurate
## ellipsoidal model of the earth (@var{ellipsoid}). @*
## Note: for antipodal points (within 0.5 degree) Vincenty's formulae are
## known to be inaccurate and may even break down.
##
## Inputs:
##
## @itemize
## @item
## @var{pt1} and @var{pt2} are two-column matrices of the form @*
## [latitude longitude].
## The units for the input coordinates angles must be degrees.
##
## @item
## Optional argument @var{ellipsoid} defines the reference ellipsoid to use.
## The default ellipsoidal model is 'WGS84', which is the globally most
## accurate model.
## @end itemize
##
## Outputs:
##
## @itemize
## @item
## @var{dist} is the computed distance between @var{pt1} and @var{pt2} in
## meters, computed along the shortest geodesic.
##
## @item
## @var{az} is a 2-column array of starting and ending azimuths of the
## geodesics in the direction from @var{pt1} to @var{pt2}, in degrees relative
## to the North (clockwise).
## @end itemize
##
## Examples:
## @example
## >> geodeticarc ([37, -76], [37, -9])
## ans = 5830081.06
## >> geodeticarc ([37, -76], [67, -76], referenceEllipsoid (7019))
## ans = 3337842.87
## @end example
##
## @seealso{distance, geodeticfwd, referenceEllipsoid, vincenty}
## @end deftypefn
function [dist, az] = geodeticarc (varargin)
if (nargin < 2)
error ("geodeticarc: too few arguments");
elseif (! (all (cellfun ("isnumeric", varargin(1:2))) && ...
cellfun ("isreal", varargin(1:2))))
error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
elseif (nargin == 2)
ellipsoid = referenceEllipsoid ("wgs84");
elseif (isstruct (varargin{3}))
ellipsoid = varargin{3};
elseif (isnumeric (varargin{3}) && numel (varargin{3}) == 2)
## Might be SemimajorAxis and Flattening
ellipsoid.SemimajorAxis = varargin{3}(1);
ellipsoid.Flattening = varargin{3}(2);
ecc = flat2ecc (varargin{3}(2));
ellipsoid.SemiminorAxis = minaxis (varargin{3}(1), ecc);
else
ellipsoid = referenceEllipsoid (varargin{3});
endif
## Check & process numeric input data sizes
isnv = ! cellfun ("isvector", varargin(1:2));
if (any (isnv))
## Check dimensions
cdim = cellfun (@(x) numel (size (x)), varargin(isnv));
if (any (cdim != 2))
error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
endif
## Check for proper orientation and expand any scalar args, if required
for ii=1:2
vsz = size (varargin{ii});
if (vsz(2) != 2) ## orientation
error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
else ## nr.of points
npt(ii) = vsz(1);
endif
endfor
if (any (npt > 1))
if (any (npt == 1))
varargin{npt == 1} = repmat (varargin{npt == 1}, npt(npt != 1), 1);
elseif (! (npt(1) - npt(2) == 0))
error (["geodeticarc: at least one of first 2 inputs must be a 1x2 vector\n" ...
" or both must have the same dimensions\n"]);
endif
endif
elseif (! all (cellfun ("isrow", varargin(1:2))))
error ("geodeticarc: first 2 arguments should be real numeric nx2 arrays");
endif
## Do the actual work. Based on Alfredo Foltran's vincenty.m
## https://github.com/alfoltranteam/octave-map/blob/master/src/vincenty.m
## (In turn based on Vicenty.T (1975) Direct and inverse solutions of
## geodesics on the ellipsoid with application of nested equations)
major = ellipsoid.SemimajorAxis;
minor = ellipsoid.SemiminorAxis;
f = ellipsoid.Flattening;
## Avoid confusion of length units imposed by ellipsoid, standardize on meters
if (isfield (ellipsoid, "LengthUnit") && ! isempty (ellipsoid.LengthUnit))
major *= unitsratio ("meters", ellipsoid.LengthUnit);
minor *= unitsratio ("meters", ellipsoid.LengthUnit);
endif
iter_limit = 20;
pt1 = deg2rad (varargin{1});
pt2 = deg2rad (varargin{2});
[lat1 lng1] = deal (pt1(:, 1), pt1(:, 2));
[lat2 lng2] = deal (pt2(:, 1), pt2(:, 2));
delta_lng = lng2 - lng1;
reduced_lat1 = atan ((1 - f) * tan (lat1));
reduced_lat2 = atan ((1 - f) * tan (lat2));
[sin_reduced1 cos_reduced1] = deal (sin (reduced_lat1), cos (reduced_lat1));
[sin_reduced2 cos_reduced2] = deal (sin (reduced_lat2), cos (reduced_lat2));
lambda_lng = delta_lng;
lambda_prime = 2 * pi;
i = 0;
## Keep track of which sigmas have converged
lit = true (size (lambda_lng));
dist = NaN (size (lambda_lng));
## Preallocate to avoid dimension changes avoid shadowing function "sigma"
sin_sigma = cos_sigma = sin_alpha = cos_sq_alpha = cos2_sigma_m = C = ...
gsigma = zeros (size (lambda_lng));
do
i++;
[sin_lambda_lng cos_lambda_lng] = deal (sin (lambda_lng), cos (lambda_lng));
sin_sigma(lit) = sqrt ((cos_reduced2(lit) .* sin_lambda_lng(lit)) .^ 2 + ...
(cos_reduced1(lit) .* sin_reduced2(lit) - ...
sin_reduced1(lit) .* cos_reduced2(lit) .* ...
cos_lambda_lng(lit)) .^ 2);
dist(find (abs (sin_sigma < eps))) = 0;
lit(find (abs (sin_sigma < eps))) = false;
cos_sigma(lit) = (sin_reduced1(lit) .* sin_reduced2(lit) + ...
cos_reduced1(lit) .* cos_reduced2(lit) .* cos_lambda_lng(lit));
gsigma(lit) = atan2 (sin_sigma(lit), cos_sigma(lit));
sin_alpha(lit) = (cos_reduced1(lit) .* cos_reduced2(lit) .* ...
sin_lambda_lng(lit) ./ sin_sigma(lit));
cos_sq_alpha(lit) = 1 - sin_alpha(lit) .^ 2;
if (abs (cos_sq_alpha(lit) > eps))
cos2_sigma_m(lit) = cos_sigma(lit) - 2 .* (sin_reduced1(lit) ...
.* sin_reduced2(lit) ./ cos_sq_alpha(lit));
else
cos2_sigma_m(lit) = 0.0; ## Equatorial line
endif
C(lit) = f / 16.0 * cos_sq_alpha(lit) .* (4 + f * (4 - 3 * cos_sq_alpha(lit)));
lambda_prime = lambda_lng;
lambda_lng(lit) = (delta_lng(lit) + (1 - C(lit)) * f .* sin_alpha(lit) .* (gsigma(lit) + ...
C(lit) .* sin_sigma(lit) .* (cos2_sigma_m(lit) + C(lit) .* cos_sigma(lit) .* ...
(-1 + 2 * cos2_sigma_m(lit) .^ 2))));
## Which inputs haven't converged yet
lit(lit) = abs (lambda_lng(lit) - lambda_prime(lit)) > 10e-12 | abs (sin_sigma(lit) < eps);
## printf ("%2d ", i, lit); printf ("\n"); ## Debug, remove when tested
until (all (! lit) || i > iter_limit);
if (i > iter_limit)
warning ("Inverse vincenty's formulae failed to converge for some inputs!");
sin_sigma(lit) = NaN;
endif
u_sq = cos_sq_alpha .* (major ^ 2 - minor ^ 2) / minor ^ 2;
A = 1 + u_sq ./ 16384.0 .* (4096 + u_sq .* (-768 + u_sq .* (320 - 175 * u_sq)));
B = u_sq ./ 1024.0 .* (256 + u_sq .* (-128 + u_sq .* (74 - 47 .* u_sq)));
delta_sigma = (B .* sin_sigma .* (cos2_sigma_m + B / 4 .* (cos_sigma .* ...
(-1 + 2 * cos2_sigma_m .^ 2) - B / 6 .* cos2_sigma_m .* ...
(-3 + 4 * sin_sigma .^ 2) .* (-3 + 4 * cos2_sigma_m .^ 2))));
dist(isnan (dist)) = (minor * A .* (gsigma - delta_sigma))(isnan (dist));
if (nargout() > 1)
alpha1 = atan2 (cos_reduced2 .* sin_lambda_lng, ...
cos_reduced1 .* sin_reduced2 - sin_reduced1 .* ...
cos_reduced2 .* cos_lambda_lng);
alpha2 = atan2 (cos_reduced1 .* sin_lambda_lng, ...
-sin_reduced1 .* cos_reduced2 + cos_reduced1 .* ...
sin_reduced2 .* cos_lambda_lng);
az = rad2deg ([alpha1 alpha2]);
endif
endfunction
%!demo
%! lgts = geodeticarc ([[0:1:89]', zeros(90, 1)], [[1:1:90]', zeros(90, 1)]) / 60;
%! plot (0:89, lgts);
%! axis tight;
%! grid on;
%! hold on;
%! plot ([0 89], [1852 1852], "k", "linestyle", "-.");
%! plot ([45 45], [min(lgts) max(lgts)], "m", "linestyle", "-.");
%! title ("Arcminute length vs. Latitude");
%! xlabel ("Latitude (degrees)", "FontWeight", "bold");
%! ylabel ("Arcminute length (m)", "FontWeight", "bold");
%! text (5, 1852.5, "Nautical mile (1852 m)");
%!error <should be real numeric nx2> geodeticarc ("a", [0 0]);
%!error <should be real numeric nx2> geodeticarc ([0 0], [1; 1]);
%!error <should be real numeric nx2> geodeticarc ([0 0; 0 0; 0 0], [1; 1]);
%!error <should be real numeric nx2> geodeticarc ([1 2 3; 2 2 2], [0 0]);
%!error <at least one> geodeticarc ([1 3 2; 2 2 2]', [0 0; 5 6])
%!test
%! [dst, az] = geodeticarc ([37, -76], [37, -9; 67 -76; 37, -76]);
%! assert (dst, [5830081.06; 3337842.871; 0], 1e-2);
%! assert (mean (az'), [90, 0, 0,], 1e-7);
|