1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
## Copyright (C) 2018-2022 Philip Nienhuis
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSEll. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{r} =} rcurve (@var{spheroid}, @var{lat})
## @deftypefnx {Function File} {@var{r} =} rcurve (@var{type}, @var{spheroid}, @var{lat})
## @deftypefnx {Function File} {@var{r} =} rcurve (@dots{}, @var{angleUnit})
## Return the length of a curve based on its type: meridian, parallel, or
## transverse.
##
## Optional input argument @var{type} is one of "meridian", "parallel", or
## "transverse; default (when left empty or skipped) is "parallel".
## @var{spheroid} is the spheroid of choice (default: "wgs84"). @var{lat}
## is the latitude at which the curve length should be computed and can be
## a numeric scalar, vector or matrix. Output argument @var{r} will have the
## same size and dimension(s) as @var{lat}.
##
## Optional input argument @var{angleUnit} can be either "radians" or "degrees"
## (= default); just "r" or "d" will do. All character input is
## case-insensitive.
##
## Examples:
##
## @example
## r = rcurve ("parallel", "wgs84", 45)
## => r =
## 4.5176e+06
## Note: this is in meters
## @end example
##
## @example
## r = rcurve ("", 45)
## => r =
## 4.5176e+06
## @end example
##
## @example
## r = rcurve ("", "", 45)
## => r =
## 4.5176e+06
## @end example
##
## @example
## r = rcurve ("", "", pi/4, "radians")
## => r =
## 4.5176e+06
## @end example
##
## @example
## r = rcurve ("meridian", "wgs84", 45)
## => r =
## 6.3674e+06
## @end example
##
## @example
## r = rcurve ("transverse", "wgs84", 45)
## => r =
## 6.3888e+06
## @end example
##
## Also can use structures as inputs:
## @example
## r = rcurve("", referenceEllipsoid ("venus"), 45)
## => r =
## 4.2793e+06
## @end example
## @end deftypefn
## Function supplied by anonymous contributor, see:
## https://savannah.gnu.org/patch/index.php?9658
function r = rcurve (varargin)
if (nargin < 2 || nargin > 4)
print_usage ();
elseif (nargin == 2)
## Neither type nor angleUnit specified
type = "parallel";
angleUnit = "degrees";
spheroid = varargin{1};
lat = varargin{2};
ip = 1;
elseif (nargin >= 3)
if (isnumeric (varargin{2}) && isreal (varargin{2}))
## arg{1} = spheroid, type skipped
type = "parallel";
ip = 1;
elseif (isnumeric (varargin{3}) && isreal (varargin{3}))
## arg{1} = type, no angleunit given
angleUnit = "degrees";
ip = 0;
else
error ("rcurve: real numeric input expected for Lat");
endif
type = varargin{ip + 1};
spheroid = varargin{ip + 2};
lat = varargin{ip + 3};
endif
if (nargin == 4)
if (ischar (varargin{4}))
angleUnit = varargin{4};
else
error ("rcurve: 'degrees' or 'radians' expected for angleUnits");
endif
endif
if isempty (type)
type = "parallel";
endif
if (isnumeric (spheroid))
spheroid = num2str (spheroid);
endif
E = sph_chk (spheroid);
if (! ischar (angleUnit) || ! ismember (lower (angleUnit(1)), {"d", "r"}))
error ("rcurve: angleUnit should be one of 'degrees' or 'radians'")
endif
if (strncmpi (lower (angleUnit), "r", 1) == 1)
c_l = cos (lat);
s_l = sin (lat);
else
c_l = cosd (lat);
s_l = sind (lat);
endif
## Insight From: Algorithms for Global Positioning pg 370-372
e2 = E.Eccentricity ^ 2;
R = E.SemimajorAxis;
e_p = e2 / (1 - e2);
N = (R * sqrt ( 1 + e_p) ./ (sqrt (1 + e_p * c_l .^ 2)));
switch type
case {"meridian"}
w = sqrt (1 - e2 .* s_l .^ 2);
r = R * (1 - e2 ) ./ (w .^ 3);
case {"parallel"}
r = N .* c_l;
case {"transverse"}
r = N;
otherwise
error ("rcurve: type should be one of 'meridian', 'parallel', or 'transverse'")
endswitch
endfunction
%!test
%! assert (rcurve ("", 45), 4517590.87885, 10e-6)
%% Row vector
%!test
%! assert (rcurve ("", [45; 20]), [4517590.87885; 5995836.38390], 10e-6)
%% Column vector
%!test
%! assert (rcurve ("", [45, 20]), [4517590.87885, 5995836.38390], 10e-6)
%% Matrix
%!test
%! assert (rcurve ("", [60 45; 35 20]), [3197104.58692, 4517590.87885; 5230426.84020, 5995836.38390], 10e-6)
%!test
%! assert (rcurve ("", "", 45), 4517590.87885, 10e-6)
%!test
%! assert (rcurve ("transverse", "", 45), 6388838.29012, 10e-6)
%!test
%! assert (rcurve ("meridian", "", 45), 6367381.81562, 10e-6)
%!error <angleUnit> rcurve ("","", 45, "km")
%!error <numeric input expected> rcurve ("", "", "A")
%!error <numeric input expected> rcurve ("", "", 45i)
%!error <type> rcurve ('All', "", 45)
|