1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
## Copyright (C) 2022 The Octave Project Developers
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{lat}, @var{lon} =} scxsc (@var{lat1}, @var{lon1}, @var{r1}, @var{lat2}, @var{lon2}, @var{r2})
## @deftypefnx {} {@var{lat}, @var{lon} =} scxsc (@dots{}, @var{angleUnit})
## @deftypefnx {} {@var{lat}, @var{lon}, @var{istn} =} scxsc (@dots{})
## Determines the intersection points between two small circles.
##
## Input:
## @itemize
## @item
## @var{lat1}, @var{lon1}, @var{r1}: latitude, longitude, and range of
## small circle #1 in angular units. These must be scalar values or vectors
## of equal length.
##
## @item
## @var{lat2}, @var{lon2}, @var{r2}: latitude, longitude, and range of
## small circle #2 in the same angular units as small circle #1. These must
## be scalar values or vectors of equal length.
##
## @item
## @var{angleUnit}: string for angular units ('degrees' or 'radians',
## case-insensitive, just the first character will do). Default is 'degrees'.
## @var{angleUnit} applies to all inputs and outputs.
## @end itemize
##
## Outputs:
##
## @itemize
## @item
## @var{lat} and @var{lon} are both Nx2 vectors of latitude(s) and longitude(s)
## of the intersection point(s). Circle pair(s) that have no intersection
## points or happen to lie on the same axis (identical or antipodal centers)
## NaN values are returned.
##
## @item
## Optional third output @var{istn}, if present, turns off warnings for
## coinciding circles or no intersections. It is an Nx1 vector indicating
## the intersection situation of each input pair of circles, with for each
## circle pair the values:
##
## @table @asis
## @item 0
## The pair of circles has two distinct intersection points.
##
## @item 1
## The circles have identical axis, so are either coinciding or don't have
## any intersection points.
##
## @item 2
## The pair of circles have just one common intersection point (tangent).
##
## @item 3
## The pair of circles are disjoint, have no intersection points.
## @end table
## @item
## @end itemize
##
## Example:
##
## @example
## lat1 = 37.67;
## lon1 = -90.2;
## rng1 = 1.79;
## lat2 = 36.11;
## lon2 = -90.95;
## rng2 = 2.42;
## [newlat, newlon] = scxsc (lat1, lon1, rng1, lat2, lon2, rng2)
## newlat =
## 36.964 38.260
## newlon =
## -88.132 -92.343
## @end example
##
## Coinciding, tangent, non-intersecting and intersecting circles:
## @example
## [lat, lon, w] = scxsc (0, 0, 1, 0, [0, 2, 0, 2], [1, 1, 2, 1.5])
## lat =
## NaN NaN
## 0 0
## NaN NaN
## 0.7262 -0.7262
##
## lon =
## NaN NaN
## 1.0000 1.0000
## NaN NaN
## 0.6875 0.6875
##
## w =
## 3
## 2
## 1
## 0
## @end example
##
## @seealso{gcxgc, gcxsc, gc2sc}
## @end deftypefn
function [lat, lon, idl] = scxsc (varargin)
if (nargin < 6)
print_usage();
elseif (nargin == 6)
angleUnit = "degrees";
else
angleUnit = varargin{7};
endif
if (! (all (cellfun ("isnumeric", varargin(1:6)) && ...
all (cellfun ("isreal", varargin(1:6))))))
error ("scxsc: numeric values expected for first six inputs");
endif
isv = ! cellfun ("isscalar", varargin(1:6));
if (any (isv))
## At least one of the location inputs is a vector. Check sizes
numval = cellfun ("numel", varargin(isv));
if (any (diff (numval)))
error ("gcxgc: all vector inputs must have same lengths");
endif
nv = max (numval);
## Make sure all inputs are column vectors of same length
for ii=1:6
if (isv(ii))
varargin(ii) = {varargin{ii}(:)};
else
varargin(ii) = {(repmat (varargin{ii}, nv, 1))};
endif
endfor
else
nv = 1;
endif
vect = [varargin{1:6}];
irad = 0;
if (! ischar (angleUnit))
error ("scxsc: character value expected for 'angleUnit'");
elseif (strncmpi (angleUnit, "degrees", min (length (angleUnit), 7)))
## Latitude must be within (-90, 90)
if (any (abs (vect(:, [1 4])) >= 90))
error ("scxsc: azimuth value(s) out of acceptable range [-90, 90]")
elseif (any (vect(:, [3 6])) >= 90 || any (vect(:, [3 6])) <= 0)
error ("scxsc: circle radii must lie in range [-90, 90]")
endif
elseif (strncmpi (angleUnit, "radians", min (length (angleUnit), 7)))
## Latitude must be within (-pi/2, pi/2) as azimuth isn't defined outside
if (any (abs (vect(:, [1 4])) >= pi / 2))
error("scxsc: azimuth value(s) out of acceptable range (-pi/2, pi/2)")
elseif (any (vect(:, [3 6])) >= pi/2 || any (vect(:, [3 6])) <= 0)
## Analogously for circle radii
error ("scxsc: circle radii must lie in range [0, 90]")
endif
irad = 1;
vect = rad2deg (vect);
else
error ("scxsc: illegal input for 'angleUnit'");
endif
## Make sure we feed reasonable longitude values ([0..360]) to the
## goniometric functions below
vect(:, [2 5]) = wrapTo360 (vect(:, [2 5]));
## Explore spherical distances between circle centers.
## Use haversine formula for approx.distances < 25..50 degrees
id = abs ((vect(:, 1) + 360) - (vect(:, 4) + 360)) > 25;
id = id | abs ((vect(:, 2) + 180) - (vect(:, 5) + 180)) > 25;
## Plain spherical cosine formula
sphd = NaN (nv, 1);
sphd(id) = acosd (sind (vect(id, 1)) .* sind (vect(id, 4)) + ...
cosd (vect(id, 1)) .* cosd (vect(id, 4)) .* ...
cosd (vect(id, 2) - vect(id, 5)));
## Haversine formula
sphd(! id) = 2 * asind (sqrt ( ...
(sind (abs (vect(! id, 1) - vect(! id, 4)) / 2)) .^ 2 + ...
cosd (vect(! id, 1)) .* cosd (vect(! id, 4)) .* ...
sind (abs (vect(! id, 2) - vect(! id, 5)) / 2) .^2));
## Init tracker for various reasons for issues with intersections
idl = zeros (nv, 1);
## Find circle pairs that have no intersections. Case 1: sphd > sum of radii
idl(sphd - (vect(:, 3) + vect(:, 6)) > 0) = 1;
## Find circle pairs that have no intersections. Case 2: one circle
## completely lying in the other w/o tangent points
idl(vect(:, 3) - sphd > vect(:, 6)) = 1;
idl(vect(:, 6) - sphd > vect(:, 3)) = 1;
## Find circle pairs with coinciding (or antipodal) centers ==>
## Some may have no intersections (one enclosed in the other)
[alat, alon] = antipode (vect(:, 4), vect(:, 5));
idlc = find ((abs (vect(:, 1) - vect (:, 4)) < 1e-13 & ...
abs (vect(:, 2) - vect (:, 5)) < 1e-13) | ...
(abs (vect(:, 1) - alat) < 1e-13 & ...
abs (vect(:, 2) - alon) < 1e-13));
idl(idlc) = 1;
## Some of these may have coinciding circles
idlca = abs (vect(idlc, 3) - vect(idlc, 6)) < 2 * eps | ...
abs (vect(idlc, 3) - 180 + vect(idlc, 6)) < 2 * eps;
idl(idlc(idlca)) = 3;
## Set up pointer to valid pairs
idv = idl < 1;
## Warning section, only for non-intersecting or coinciding circle pairs
if (nargout < 3)
if (any (idlca))
warning ("Octave:coinciding-small-circles", ...
"scxsc: (some) circle pair(s) coincide.\n");
endif
if (any (idl == 1))
warning ("Octave:no-intersecting-circles", ...
"scxsc: one or more circle pair(s) do not intersect.\n");
endif
endif
## Initialize output
[lat lon] = deal (zeros (nv, 2));
## Set lat/lon rows for coinciding and/or disjoint circles to NaN
lat(! idv, :) = lon(! idv, :) = NaN;
if (numel (find (idv)) < 1)
## No pair w/o issues => nothing more to do here
return
endif
idv = find (idv);
## Get geocentric coordinates
c1 = geoc2cart (vect(idv, 1), vect(idv, 2));
c2 = geoc2cart (vect(idv, 4), vect(idv, 5));
## Algorithm insight comes from
## https://gis.stackexchange.com/questions/48937/calculating-intersection-of-two-circles
q = dot (c1, c2, 2);
q2 = q .^ 2;
n = cross (c1, c2, 2);
n2 = dot (n, n, 2);
r1 = vect(idv, 3);
r2 = vect(idv, 6);
a = (cosd (r1) - q .* cosd (r2)) ./ (1 - q2);
b = (cosd (r2) - q .* cosd (r1)) ./ (1 - q2);
x0 = a .* c1 + b .* c2;
x02 = dot (x0, x0, 2);
## Dot product cannot be larger than 1 here
x02 = sign (x02) .* min (1, abs (x02));
t = sqrt ((1 - x02) ./ n2); # <=== No chance n2 can be zero? (div by zero !!!)
p1 = x0 + (t .* n);
p2 = x0 - (t .* n);
lat(idv, 1) = atan2d (p1(:, 3), hypot (p1(:, 1), p1(:, 2)));
lon(idv, 1) = atan2d (p1(:, 2), p1(:, 1));
lat(idv, 2) = atan2d (p2(:, 3), hypot (p2(:, 1), p2 (:, 2)));
lon(idv, 2) = atan2d (p2(:, 2), p2(:, 1));
idl(abs (diff (lat'))' < 2e-5 & abs (diff (lon'))' < 2e-5) = 2;
if (irad)
lat = deg2rad (lat);
lon = deg2rad (lon);
endif
endfunction
## Compute geocentric from geodesic coordinates
function [c] = geoc2cart (lat, lon)
c(:, 1) = cosd (lon) .* cosd (lat);
c(:, 2) = sind (lon) .* cosd (lat);
c(:, 3) = sind (lat);
endfunction
%!test
%! R1 = rad2deg (107.5 / earthRadius ("NM")); # Convert NM to deg
%! R2 = rad2deg (145 / earthRadius ("NM"));
%! [lat, lon, jj] = scxsc (37.673442, -90.234036, R1, 36.109997, -90.953669, R2);
%! assert (lat(1), 36.988778646, 1e-6);
%! assert (lon(1), -88.15335362, 1e-6);
%!test
%! [a, b, c] = gc2sc (45, [0:45:360], 45);
%! ## Correct a, must be 30 exactly degrees. reckon() is a bit inaccurate
%! a = -30 * ones (9, 1);
%! [d, e, f] = gc2sc (-45, -135, -45);
%! wst = warning ("off", "Octave:coinciding-small-circles", "local");
%! [g, h] = scxsc (a, b, c, d, e, f);
%! warning (wst.state, "Octave:coinciding-small-circles");
%! assert (g(2, 1), NaN);
%! assert ([g(9, 1) h(9, 1)], [-57.997936587 -102.76438968], 1e-6);
%!test
%! wst1 = warning ("off", "Octave:coinciding-small-circles", "local");
%! wst2 = warning ("off", "Octave:no-intersecting-circles", "local");
%! [~, ~, w] = scxsc (0, 0, 1, 0, [0, 2, 0, 2], [1, 1, 2, 1.5]);
%! warning (wst2.state, "Octave:no-intersecting-circles");
%! warning (wst1.state, "Octave:coinciding-small-circles");
%! assert (w, [3; 2; 1; 0], eps);
%test #3 Disjoint circles
%!warning <one or more circle> scxsc (45, 90, 1, -30, 60, 1);
%!warning <one or more circle> scxsc (0, 0, 10, 0, 4, 2);
%!warning <one or more circle> scxsc (0, 4, 3, 0, 0, 10);
%!error <numeric> scxsc ("s", 0, 100, 10, 30, 0);
%!error <numeric> scxsc (3i, 0, 100, 10, 30, 0);
%!error <numeric> scxsc (50, "s", 100, 10, 30, 0);
%!error <numeric> scxsc (50, 2i, 10, 10, 30, 0);
%!error <numeric> scxsc (50, 0, "s", 10, 30, 0);
%!error <numeric> scxsc (50, 0, 100i, 10, 30, 0);
%!error <numeric> scxsc (50, 0, 100, "s", 30, 0);
%!error <numeric> scxsc (50, 0, 100, 10i, 30, 0);
%!error <numeric> scxsc (50, 0, 100, 10, "s", 0);
%!error <numeric> scxsc (50, 0, 100, 10, 30i, 0);
%!error <numeric> scxsc (50, 0, 100, 10, 30, "s");
%!error <numeric> scxsc (50, 0, 100, 10, 30, 2i);
%!error <illegal> scxsc (50, 0, 100, 10, 30, 0, "f");
%!error <illegal> scxsc (50, 0, 100, 10, 30, 0, "degreef");
%!error <azimuth value> scxsc (190, 0, 90, -90.000001, 180, 80);
%!error <azimuth value> scxsc (190, 0, -90.001, -90.000001, 180, 80);
%!error <azimuth value> scxsc (pi/1.999, 0, pi/2, pi/2.0001, 2, 2*pi/3, "r");
|