File: cubicBezierToPolyline.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (107 lines) | stat: -rw-r--r-- 3,921 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function varargout = cubicBezierToPolyline(points, varargin)
%CUBICBEZIERTOPOLYLINE Compute equivalent polyline from bezier curve control.
%
%   POLY = cubicBezierToPolyline(POINTS, N)
%   Creates a polyline with N edges from the coordinates of the 4 control
%   points stored in POINTS. 
%   POINTS is either a 4-by-2 array (vertical concatenation of point
%   coordinates), or a 1-by-8 array (horizontal concatenation of point
%   coordinates). 
%   The result is a (N-1)-by-2 array.
%
%   POLY = cubicBezierToPolyline(POINTS)
%   Assumes N = 64 edges as default.
%
%   [X Y] = cubicBezierToPolyline(...)
%   Returns the result in two separate arrays for X and Y coordinates.
%
%
%   Example
%     poly = cubicBezierToPolyline([0 0;5 10;10 5;10 0], 100);
%     drawPolyline(poly, 'linewidth', 2, 'color', 'g');
%
%   See also 
%     drawBezierCurve, drawPolyline
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2011-10-06, using Matlab 7.9.0.529 (R2009b)
% Copyright 2011-2023 INRA - Cepia Software Platform

% default number of discretization steps
N = 64;

% check if discretization step is specified
if ~isempty(varargin)
    var = varargin{1};
    if length(var) == 1 && isnumeric(var)
        N = round(var);
    end
end

% parametrization variable for bezier (use N+1 points to have N edges)
t = linspace(0, 1, N+1)';

% rename points
if size(points, 2)==2
    % case of points given as a 4-by-2 array
    p1 = points(1,:);
    c1 = points(2,:);
    c2 = points(3,:);
    p2 = points(4,:);
else
    % case of points given as a 1-by-8 array, [X1 Y1 CX1 CX2..]
    p1 = points(1:2);
    c1 = points(3:4);
    c2 = points(5:6);
    p2 = points(7:8);
end    

% compute coefficients of Bezier Polynomial, using polyval ordering
coef(4, 1) = p1(1);
coef(4, 2) = p1(2);
coef(3, 1) = 3 * c1(1) - 3 * p1(1);
coef(3, 2) = 3 * c1(2) - 3 * p1(2);
coef(2, 1) = 3 * p1(1) - 6 * c1(1) + 3 * c2(1);
coef(2, 2) = 3 * p1(2) - 6 * c1(2) + 3 * c2(2);
coef(1, 1) = p2(1) - 3 * c2(1) + 3 * c1(1) - p1(1);
coef(1, 2) = p2(2) - 3 * c2(2) + 3 * c1(2) - p1(2); 

% compute position of vertices
x = polyval(coef(:, 1), t);
y = polyval(coef(:, 2), t);

if nargout <= 1
    varargout = {[x y]};
else
    varargout = {x, y};
end