1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = drawCircle(varargin)
%DRAWCIRCLE Draw a circle on the current axis.
%
% drawCircle(X0, Y0, R);
% Draw the circle with center (X0,Y0) and the radius R. If X0, Y0 and R
% are column vectors of the same length, draw each circle successively.
%
% drawCircle(CIRCLE);
% Concatenate all parameters in a Nx3 array, where N is the number of
% circles to draw.
%
% drawCircle(CENTER, RADIUS);
% Specify CENTER as Nx2 array, and radius as a Nx1 array.
%
% drawCircle(..., NSTEP);
% Specify the number of edges that will be used to draw the circle.
% Default value is 72, creating an approximation of one point for each 5
% degrees.
%
% drawCircle(..., NAME, VALUE);
% Specifies plotting options as pair of parameters name/value. See plot
% documentation for details.
%
% drawCircle(AX, ...)
% Specifies the handle of the axis to draw on.
%
% H = drawCircle(...);
% return handles to each created curve.
%
% Example
% figure;
% hold on;
% drawCircle([10 20 30]);
% drawCircle([15 15 40], 'color', 'r', 'linewidth', 2);
% axis equal;
%
% See also
% circles2d, drawCircleArc, drawEllipse, circleToPolygon
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2003-10-31
% Copyright 2003-2023 INRA - TPV URPOI - BIA IMASTE
%% Parse input arguments
% extract handle of axis to draw on
[ax, varargin] = parseAxisHandle(varargin{:});
% process input parameters
var = varargin{1};
if size(var, 2) == 1
x0 = varargin{1};
y0 = varargin{2};
r = varargin{3};
varargin(1:3) = [];
elseif size(var, 2) == 2
x0 = var(:,1);
y0 = var(:,2);
r = varargin{2};
varargin(1:2) = [];
elseif size(var, 2) == 3
x0 = var(:,1);
y0 = var(:,2);
r = var(:,3);
varargin(1) = [];
else
error('bad format for input in drawCircle');
end
% default number of discretization steps
N = 72;
% check if discretization step is specified
if ~isempty(varargin)
var = varargin{1};
if isnumeric(var) && isscalar(var)
N = round(var);
varargin(1) = [];
end
end
%% Pre-processing
% ensure each parameter is column vector
x0 = x0(:);
y0 = y0(:);
r = r(:);
% parametrization variable for circle (use N+1 as first point counts twice)
t = linspace(0, 2*pi, N+1);
cot = cos(t);
sit = sin(t);
% empty array for graphic handles
h = zeros(size(x0));
% save hold state
holdState = ishold(ax);
hold(ax, 'on');
%% Display each circle
% compute discretization of each circle
for i = 1:length(x0)
xt = x0(i) + r(i) * cot;
yt = y0(i) + r(i) * sit;
h(i) = plot(ax, xt, yt, varargin{:});
end
%% Post-processing
% restore hold state
if ~holdState
hold(ax, 'off');
end
if nargout > 0
varargout = {h};
end
|