File: fitAffineTransform2d.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (86 lines) | stat: -rw-r--r-- 3,771 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function trans = fitAffineTransform2d(ref, src)
%FITAFFINETRANSFORM2D Compute the affine transform that best register two point sets.
%
%   TRANSFO = fitAffineTransform2d(REF, SRC)
%   Returns the affine transform matrix that minimizes the distance between
%   the reference point set REF and the point set SRC after transformation.
%   Both REF and SRC must by N-by-2 arrays with the same number of rows,
%   and the points must be in correspondence.
%   The function minimizes the sum of the squared distances:
%   CRIT = sum(distancePoints(REF, transformPoint(PTS, TRANSFO)).^2);
%
%   Example
%     % computes the transform the register two ellipses
%     % create the reference poitn set
%     elli = [50 50 40 20 30];
%     poly = resamplePolygonByLength(ellipseToPolygon(elli, 200), 5);
%     figure; axis equal; axis([0 100 0 100]); hold on;
%     drawPoint(poly, 'kx')
%     % create the point set to fit on the reference
%     trans0 = createRotation([20 60], -pi/8);
%     poly2 = transformPoint(poly, trans0);
%     poly2 = poly2 + randn(size(poly)) * 2;
%     drawPoint(poly2, 'b+');
%     % compute the transform that project poly2 onto poly.
%     transfo = fitAffineTransform2d(poly, poly2);
%     poly2t = transformPoint(poly2, transfo);
%     drawPoint(poly2t, 'mo')
%     legend('Reference', 'Initial', 'Transformed');
%
%   See also 
%     transforms2d, transformPoint, transformVector,
%     fitPolynomialTransform2d, registerICP, fitAffineTransform3d
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2009-07-31, using Matlab 7.7.0.471 (R2008b)
% Copyright 2009-2023 INRAE - Cepia Software Platform

% check number of points are equal
N = size(src, 1);
if size(ref, 1) ~= N
    error('Requires the same number of points for both arrays');
end

% main matrix of the problem
A = [...
    src(:,1) src(:,2) ones(N,1) zeros(N, 3) ; ...
    zeros(N, 3) src(:,1) src(:,2) ones(N,1)  ];

% conditions initialisations
B = [ref(:,1) ; ref(:,2)];

% compute coefficients using least square
coefs = A\B;

% format to a matrix
trans = [coefs(1:3)' ; coefs(4:6)'; 0 0 1];