1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function elli = fitEllipse(varargin)
%FITELLIPSE Fit an ellipse to a set of 2D points.
%
% ELLI = fitEllipse(PTS)
%
% Example
% elli = [50 40 30 10 20];
% pts = ellipseToPolygon(elli, 60) + randn(60,2);
% figure; hold on; drawPoint(pts, 'ko');
% axis equal; axis([0 100 0 100]);
% ellFit = fitEllipse(pts);
% drawEllipse(ellFit, 'b')
%
% This is a rewrite of an original function from the authors cited below.
% Changes from original submission include:
% * convert angle of result ellipse to degrees (to comply with MatGeom
% convention)
% * update comments
%
% Authors:
% Andrew Fitzgibbon, Maurizio Pilu, Bob Fisher
% Reference: "Direct Least Squares Fitting of Ellipses", IEEE T-PAMI, 1999
%
% https://fr.mathworks.com/matlabcentral/fileexchange/3215-fit_ellipse
%
% @Article{Fitzgibbon99,
% author = "Fitzgibbon, A.~W.and Pilu, M. and Fisher, R.~B.",
% title = "Direct least-squares fitting of ellipses",
% journal = pami,
% year = 1999,
% volume = 21,
% number = 5,
% month = may,
% pages = "476--480"
% }
%
% See also
% geom2d, ellipses2d, createEllipse, equivalentEllipse, fitLine
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2022-07-16, using Matlab 9.12.0.1884302 (R2022a)
% Copyright 2022-2023 INRAE - BIA Research Unit - BIBS Platform (Nantes)
%% Process input arguments
if nargin==1
var = varargin{1};
X = var(:,1);
Y = var(:,2);
else
X = varargin{1};
Y = varargin{2};
end
%% Normalize data
% recenter and reduce range
mx = mean(X);
my = mean(Y);
sx = (max(X) - min(X)) / 2;
sy = (max(Y) - min(Y)) / 2;
x = (X-mx) / sx;
y = (Y-my) / sy;
% Force to column vectors
x = x(:);
y = y(:);
%% Main processing
% Build design matrix
D = [ x.*x x.*y y.*y x y ones(size(x)) ];
% Build scatter matrix
S = D' * D;
% Build 6x6 constraint matrix
C(6,6) = 0;
C(1,3) = -2;
C(2,2) = 1;
C(3,1) = -2;
% Solve eigensystem
% Break into blocks
tmpA = S(1:3,1:3);
tmpB = S(1:3,4:6);
tmpC = S(4:6,4:6);
tmpD = C(1:3,1:3);
tmpE = tmpC \ tmpB';
[evec_x, eval_x] = eig(tmpD \ (tmpA - tmpB*tmpE));
% Find the positive (as det(tmpD) < 0) eigenvalue
I = real(diag(eval_x)) < 1e-8 & ~isinf(diag(eval_x));
% Extract eigenvector corresponding to negative eigenvalue
A = real(evec_x(:,I));
% Recover the bottom half...
evec_y = -tmpE * A;
A = [A; evec_y];
% re-calibrate
par = [
A(1)*sy*sy, ...
A(2)*sx*sy, ...
A(3)*sx*sx, ...
-2*A(1)*sy*sy*mx - A(2)*sx*sy*my + A(4)*sx*sy*sy, ...
-A(2)*sx*sy*mx - 2*A(3)*sx*sx*my + A(5)*sx*sx*sy, ...
A(1)*sy*sy*mx*mx + A(2)*sx*sy*mx*my + A(3)*sx*sx*my*my ...
- A(4)*sx*sy*sy*mx - A(5)*sx*sx*sy*my ...
+ A(6)*sx*sx*sy*sy ...
]';
%% Identify parameters
% rotation angle
theta = 0.5 * atan2(par(2), par(1) - par(3));
% pre-comptute trigonometrics
cost = cos(theta);
sint = sin(theta);
sin2 = sint .* sint;
cos2 = cost .* cost;
cos_sin = sint .* cost;
%
Ao = par(6);
Au = par(4) .* cost + par(5) .* sint;
Av = -par(4) .* sint + par(5) .* cost;
Auu = par(1) .* cos2 + par(3) .* sin2 + par(2) .* cos_sin;
Avv = par(1) .* sin2 + par(3) .* cos2 - par(2) .* cos_sin;
% ROTATED = [Ao Au Av Auu Avv]
tuCentre = - Au./(2.*Auu);
tvCentre = - Av./(2.*Avv);
wCentre = Ao - Auu.*tuCentre.*tuCentre - Avv.*tvCentre.*tvCentre;
uCentre = tuCentre .* cost - tvCentre .* sint;
vCentre = tuCentre .* sint + tvCentre .* cost;
Ru = -wCentre ./ Auu;
Rv = -wCentre ./ Avv;
Ru = sqrt(abs(Ru)) .* sign(Ru);
Rv = sqrt(abs(Rv)) .* sign(Rv);
% create row vector representing ellipse
elli = [uCentre, vCentre, Ru, Rv, rad2deg(theta)];
|