1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function point = intersectEdges(edge1, edge2, varargin)
%INTERSECTEDGES Return all intersections between two set of edges.
%
% P = intersectEdges(E1, E2);
% returns the intersection point of edges E1 and E2.
% E1 and E2 are 1-by-4 arrays, containing parametric representation of
% each edge (in the form [x1 y1 x2 y2], see 'createEdge' for details).
%
% In case of colinear edges, the result P contains [Inf Inf].
% In case of parallel but not colinear edges, the result P contains
% [NaN NaN].
%
% If each input is N-by-4 array, the result is a N-by-2 array containing
% the intersection of each couple of edges.
% If one of the input has N rows and the other 1 row, the result is a
% N-by-2 array.
%
% P = intersectEdges(E1, E2, TOL);
% Specifies a tolerance parameter to determine parallel and colinear
% edges, and if a point belongs to an edge or not. The latter test is
% performed on the relative position of the intersection point over the
% edge, that should lie within [-TOL; 1+TOL].
%
% See also
% edges2d, intersectLines
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2003-10-31
% Copyright 2003-2023 INRA - Cepia Software Platform
% tolerance for precision
tol = 1e-14;
if nargin > 2
tol = varargin{1};
end
%% Initialisations
% ensure input arrays are same size
N1 = size(edge1, 1);
N2 = size(edge2, 1);
% ensure input have same size
if N1 ~= N2
if N1 == 1
edge1 = repmat(edge1, [N2 1]);
N1 = N2;
elseif N2 == 1
edge2 = repmat(edge2, [N1 1]);
end
end
% initialize result array
x0 = zeros(N1, 1);
y0 = zeros(N1, 1);
%% Detect parallel and colinear cases
% indices of parallel edges
%par = abs(dx1.*dy2 - dx1.*dy2)<tol;
par = isParallel(edge1(:,3:4)-edge1(:,1:2), edge2(:,3:4)-edge2(:,1:2));
% indices of colinear edges
% equivalent to: |(x2-x1)*dy1 - (y2-y1)*dx1| < eps
col = abs( (edge2(:,1)-edge1(:,1)) .* (edge1(:,4)-edge1(:,2)) - ...
(edge2(:,2)-edge1(:,2)) .* (edge1(:,3)-edge1(:,1)) ) < tol & par;
% Parallel edges have no intersection -> return [NaN NaN]
x0(par & ~col) = NaN;
y0(par & ~col) = NaN;
%% Process colinear edges
% colinear edges may have 0, 1 or infinite intersection
% Setup result intersection point as follow:
% * no intersection -> [NaN NaN]
% * partial overlap -> [Inf Inf]
% * touches at extremity -> extremity coordinates
% Discrimnation based on position of edge2 vertices on edge1
if sum(col) > 0
% array for storing results of colinear edges
resCol = Inf * ones(size(col));
colInds = find(col);
% compute position of edge2 vertices wrt edge1
t1 = edgePosition(edge2(col, 1:2), edge1(col, :), 'diag');
t2 = edgePosition(edge2(col, 3:4), edge1(col, :), 'diag');
% control location of vertices: we want t1<t2
swap = t1 > t2;
tmp = t1(swap);
t1(swap) = t2(swap);
t2(swap) = tmp;
% edge totally before first vertex or totally after last vertex
resCol(colInds(t2 < -tol)) = NaN;
resCol(colInds(t1 > 1+tol)) = NaN;
% set up result into point coordinate
x0(col) = resCol(col);
y0(col) = resCol(col);
% touches on first point of first edge
touch = colInds(abs(t2) < tol);
x0(touch) = edge1(touch, 1);
y0(touch) = edge1(touch, 2);
% touches on second point of first edge
touch = colInds(abs(t1-1) < tol);
x0(touch) = edge1(touch, 3);
y0(touch) = edge1(touch, 4);
end
%% Process non parallel cases
% process edges whose supporting lines intersect
i = find(~par);
% use a test to avoid process empty arrays
if sum(i) > 0
% extract base parameters of supporting lines for non-parallel edges
x1 = edge1(i,1);
y1 = edge1(i,2);
dx1 = edge1(i,3) - x1;
dy1 = edge1(i,4) - y1;
x2 = edge2(i,1);
y2 = edge2(i,2);
dx2 = edge2(i,3) - x2;
dy2 = edge2(i,4) - y2;
% compute intersection points of supporting lines
delta = (dx2.*dy1 - dx1.*dy2);
x0(i) = ((y2-y1).*dx1.*dx2 + x1.*dy1.*dx2 - x2.*dy2.*dx1) ./ delta;
y0(i) = ((x2-x1).*dy1.*dy2 + y1.*dx1.*dy2 - y2.*dx2.*dy1) ./ -delta;
% compute position of intersection points on each edge
% t1 is position on edge1, t2 is position on edge2
t1 = ((y0(i)-y1).*dy1 + (x0(i)-x1).*dx1) ./ (dx1.*dx1+dy1.*dy1);
t2 = ((y0(i)-y2).*dy2 + (x0(i)-x2).*dx2) ./ (dx2.*dx2+dy2.*dy2);
% check position of points on edges.
% it should be comprised between 0 and 1 for both t1 and t2.
% if not, the edges do not intersect
out = t1<-tol | t1>1+tol | t2<-tol | t2>1+tol;
x0(i(out)) = NaN;
y0(i(out)) = NaN;
end
%% format output arguments
point = [x0 y0];
|