1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function point = intersectLineEdge(line, edge, varargin)
%INTERSECTLINEEDGE Return intersection between a line and an edge.
%
% P = intersectLineEdge(LINE, EDGE);
% returns the intersection point of lines LINE and edge EDGE.
% LINE is a 1-by-4 array containing parametric representation of the line
% (in the form [x0 y0 dx dy], see 'createLine' for details).
% EDGE is a 1-by-4 array containing the coordinates of first and second
% points (in the form [x1 y1 x2 y2], see 'createEdge' for details).
%
% In case of colinear line and edge, returns [Inf Inf].
% If line does not intersect edge, returns [NaN NaN].
%
% If each input is N-by-4 array, the result is a N-by-2 array containing
% intersections for each couple of edge and line.
% If one of the input has N rows and the other 1 row, the result is a
% N-by-2 array.
%
% P = intersectLineEdge(LINE, EDGE, TOL);
% Specifies the tolerance option for determining if a point belongs to an
% edge and if lines are parallel.
%
% See also
% lines2d, edges2d, intersectEdges, intersectLines
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2003-10-31
% Copyright 2003-2023 INRA - TPV URPOI - BIA IMASTE
% extract tolerance option
tol = 1e-14;
if ~isempty(varargin)
tol = varargin{1};
end
% number of lines and edges
nLines = size(line, 1);
nEdges = size(edge, 1);
% origin and direction vector of lines
lx0 = line(:,1);
ly0 = line(:,2);
ldx = line(:,3);
ldy = line(:,4);
% origin and direction vector of edges
ex1 = edge(:,1);
ey1 = edge(:,2);
ex2 = edge(:,3);
ey2 = edge(:,4);
edx = ex2 - ex1;
edy = ey2 - ey1;
% normalizes direction vectors
ldn = hypot(ldx, ldy);
ldx = ldx ./ ldn;
ldy = ldy ./ ldn;
% normalizes direction vectors
edgeLength = hypot(edx, edy);
edx = edx ./ edgeLength;
edy = edy ./ edgeLength;
% indices of parallel lines
par = abs(ldx .* edy - edx .* ldy) < tol;
% indices of colinear lines
col = abs((ex1-lx0) .* ldy - (ey1-ly0) .* ldx) < tol & par ;
xi(col) = Inf;
yi(col) = Inf;
xi(par & ~col) = NaN;
yi(par & ~col) = NaN;
i = ~par;
% compute intersection points
if nLines == nEdges
xi(i) = ((ey1(i)-ly0(i)).*ldx(i).*edx(i) + lx0(i).*ldy(i).*edx(i) - ex1(i).*edy(i).*ldx(i)) ./ ...
(edx(i).*ldy(i)-ldx(i).*edy(i)) ;
yi(i) = ((ex1(i)-lx0(i)).*ldy(i).*edy(i) + ly0(i).*ldx(i).*edy(i) - ey1(i).*edx(i).*ldy(i)) ./ ...
(ldx(i).*edy(i)-edx(i).*ldy(i)) ;
elseif nLines == 1
xi(i) = ((ey1(i)-ly0).*ldx.*edx(i) + lx0.*ldy.*edx(i) - ex1(i).*edy(i).*ldx) ./ ...
(edx(i).*ldy-ldx.*edy(i)) ;
yi(i) = ((ex1(i)-lx0).*ldy.*edy(i) + ly0.*ldx.*edy(i) - ey1(i).*edx(i).*ldy) ./ ...
(ldx.*edy(i)-edx(i).*ldy) ;
elseif nEdges == 1
xi(i) = ((ey1-ly0(i)).*ldx(i).*edx + lx0(i).*ldy(i).*edx - ex1(i).*edy.*ldx(i)) ./ ...
(edx.*ldy(i)-ldx(i).*edy) ;
yi(i) = ((ex1-lx0(i)).*ldy(i).*edy + ly0(i).*ldx(i).*edy - ey1(i).*edx.*ldy(i)) ./ ...
(ldx(i).*edy-edx.*ldy(i)) ;
end
% format output arguments
point = [xi' yi'];
% compute position of points projected on the supporting line, by using
% dot product and normalising by edge length
pos = bsxfun(@rdivide, ...
bsxfun(@times, bsxfun(@minus, xi, ex1), edx) + ...
bsxfun(@times, bsxfun(@minus, yi, ey1), edy), edgeLength);
% set coordinates of points outside edge to NaN
out = pos < -tol | pos > (1+tol);
point(out, :) = NaN;
|