File: minDistancePoints.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (246 lines) | stat: -rw-r--r-- 8,288 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function varargout = minDistancePoints(p1, varargin)
%MINDISTANCEPOINTS Minimal distance between several points.
%
%   DIST = minDistancePoints(PTS)
%   Returns the minimum distance between all pairs of points in PTS. PTS
%   is a N-by-D array of values, N being the number of points and D the
%   dimension of the points.
%
%   DIST = minDistancePoints(PTS1, PTS2)
%   Computes for each point in PTS1 the minimal distance to every point of
%   PTS2. PTS1 and PTS2 are N-by-D arrays, where N is the number of points,
%   and D is the dimension. Dimension must be the same for both arrays, but
%   number of points can be different.
%   The result is an array the same length as PTS1.
%
%
%   DIST = minDistancePoints(..., NORM)
%   Uses a user-specified norm. NORM=2 means euclidean norm (the default), 
%   NORM=1 is the Manhattan (or "taxi-driver") distance.
%   Increasing NORM growing up reduces the minimal distance, with a limit
%   to the biggest coordinate difference among dimensions. 
%   
%
%   [DIST, I, J] = minDistancePoints(PTS)
%   Returns indices I and J of the 2 points which are the closest. DIST
%   verifies relation:
%   DIST = distancePoints(PTS(I,:), PTS(J,:));
%
%   [DIST, J] = minDistancePoints(PTS1, PTS2, ...)
%   Also returns the indices of points which are the closest. J has the
%   same size as DIST. It verifies relation: 
%   DIST(I) = distancePoints(PTS1(I,:), PTS2(J,:));
%   for I comprised between 1 and the number of rows in PTS1.
%
%   Examples:
%   % minimal distance between random planar points
%       points = rand(20,2)*100;
%       minDist = minDistancePoints(points);
%
%   % minimal distance between random space points
%       points = rand(30,3)*100;
%       [minDist ind1 ind2] = minDistancePoints(points);
%       minDist
%       distancePoints(points(ind1, :), points(ind2, :))
%   % results should be the same
%
%   % minimal distance between 2 sets of points
%       points1 = rand(30,2)*100;
%       points2 = rand(30,2)*100;
%       [minDists inds] = minDistancePoints(points1, points2);
%       minDists(10)
%       distancePoints(points1(10, :), points2(inds(10), :))
%   % results should be the same
%   
%   % Find the (approximated) orthogonal projection onto an ellipse
%     elli = [50 50 40 20 30];
%     poly = ellipseToPolygon(elli, 200);
%     figure; axis equal; axis([0 100 0 100]); hold on;
%     drawPolygon(poly, 'k')
%     pts = [20 20; 50 20; 80 30];
%     [dists, inds] = minDistancePoints(pts, poly);
%     drawPoint(pts, 'bo');
%     drawPoint(poly(inds,:), 'ko');
%     drawEdge([pts poly(inds,:)], 'k')
%   
%
%   See also 
%     points2d, distancePoints, nndist, findClosestPoint, hausdorffDistance
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2004-06-15
% Copyright 2004-2023 INRAE - Cepia Software Platform

%% Initialisations

% default norm (euclidean)
n = 2;

% a single array is given
one_array = true;

% process input variables
if nargin == 1
    % specify only one array of points, not the norm
    p2 = p1;
elseif nargin == 2
    if isscalar(varargin{1})
        % specify array of points and the norm
        n   = varargin{1};
        p2  = p1;
    else
        % specify two arrays of points
        p2  = varargin{1};
        one_array = false;
    end
elseif nargin == 3
    % specify two array of points and the norm
    p2        = varargin{1};
    n         = varargin{2};
    one_array = false;
else
    error ('Wrong number of input arguments');
end

% number of points in each array
n1  = size(p1, 1);
n2  = size(p2, 1);

% dimensionality of points
d   = size(p1, 2);


%% Computation of distances

% allocate memory
dist = zeros(n1, n2);

% Compute difference of coordinate for each pair of point (n1-by-n2 array)
% and for each dimension. -> dist is a n1-by-n2 array.
% in 2D: dist = dx.*dx + dy.*dy;
if n == inf
    % infinite norm corresponds to maximum absolute value of differences
    % in 2D: dist = max(abs(dx) + max(abs(dy));
    for i = 1:d
        dist = max(dist, abs(bsxfun(@minus, p1(:,i), p2(:,i)')));
    end
else
    for i = 1:d
        dist = dist + abs(bsxfun(@minus, p1(:,i), p2(:,i)')).^n;
    end
end

% compute minimum distance, and indices
if ~one_array
    % If two array of points where given
    [minSqDist, ind]    = min(dist, [], 2);
    minDist             = power(minSqDist, 1/n);
    [ind2, ind1]        = ind2sub([n1 n2], ind);
    
else
    % A single array was given
    dist                = dist + diag(inf(n1,1)); % remove zeros from diagonal
    dist                = dist(tril(true(n1, n1)));
    [minSqDist, ind]    = min(dist); % index on packed lower triangular matrix
    minDist             = power(minSqDist, 1/n);
    
    [ind2, ind1]        = ind2sub_tril(n1, ind);
    ind2 = ind2(1);
    ind1 = ind1(1);
    ind                 = sub2ind([n1 n1], ind2, ind1);
end


%% format output parameters

% format output depending on number of asked parameters
if nargout <= 1
    varargout{1} = minDist;
    
elseif nargout == 2
    % If two arrays are asked, 'ind' is an array of indices of p2, one for each
    % point in p1, corresponding to the result in minDist
    varargout{1} = minDist;
    varargout{2} = ind;
    
elseif nargout == 3
    % If only one array is asked, minDist is a scalar, ind1 and ind2 are 2
    % indices corresponding to the closest points.
    varargout{1} = minDist;
    varargout{2} = ind1;
    varargout{3} = ind2;
end

end

function [r, c] = ind2sub_tril (N, idx)
% Convert a linear index to subscripts of a triangular matrix.
%
% [r, c] = ind2sub_tril (N, idx)
%
% An example of triangular matrix linearly indexed follows
%
%          N = 4;
%          A = -repmat (1:N,N,1);
%          A = [A repmat (diagind, N,1) - A.'];
%          A = tril(A)
%          => A =
%              1    0    0    0
%              2    5    0    0
%              3    6    8    0
%              4    7    9   10
%
% The following example shows how to convert the linear index `6' in
% the 4-by-4 matrix of the example into a subscript.
%
%          [r, c] = ind2sub_tril (4, 6)
%          => r =  3
%            c =  2
%
% when idx is a row or column matrix of linear indeces then r and
% c have the same shape as idx.
%

endOfRow = 0.5 * (1:N) .* (2*N:-1:N + 1);
c = zeros(size(endOfRow));
for i = 1:length(endOfRow)
    ind = find(endOfRow <= idx - 1, 1, 'last') + 1;
    if isempty(ind) 
        ind = 1;
    end
    c(i) = ind;
end

r = N - endOfRow(c) + idx ;

end