1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function obox = orientedBox(points)
%ORIENTEDBOX Minimum-width oriented bounding box of a set of points.
%
% OBOX = orientedBox(PTS)
% Computes the oriented bounding box of a set of points. Oriented box is
% defined by a center, two dimensions (the length and the width), and the
% orientation of the length axis. Orientation is counted in degrees,
% counter-clockwise.
%
% Example
% % Draw oriented bounding box of an ellipse
% elli = [30 40 40 20 30];
% pts = ellipseToPolygon(elli, 120);
% obox = orientedBox(pts);
% figure; hold on;
% drawEllipse(elli);
% drawOrientedBox(obox, 'm');
%
% See also
% drawOrientedBox, orientedBoxToPolygon
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2012-03-29, using Matlab 7.9.0.529 (R2009b)
% Copyright 2012-2023 INRA - Cepia Software Platform
%% initialisations
% first, compute convex hull of the polygon
inds = convhull(points(:,1), points(:,2));
hull = points(inds, :);
% if first and last points are the same, remove the last one
if inds(1) == inds(end)
hull = hull(1:end-1, :);
end
% compute convex hull centroid, that corresponds to approximate
% location of rectangle center
center = mean(hull, 1);
hull = bsxfun(@minus, hull, center);
% number of hull vertices
nV = size(hull, 1);
% default values
rotatedAngle = 0;
minWidth = inf;
minAngle = 0;
% avoid degenerated cases
if nV < 3
return;
end
% indices of vertices in extreme y directions
[tmp, indA] = min(hull(:, 2)); %#ok<ASGLU>
[tmp, indB] = max(hull(:, 2)); %#ok<ASGLU>
caliperA = [ 1 0]; % Caliper A points along the positive x-axis
caliperB = [-1 0]; % Caliper B points along the negative x-axis
%% Find the direction with minimum width (rotating caliper algorithm)
while rotatedAngle < pi
% compute the direction vectors corresponding to each edge
indA2 = mod(indA, nV) + 1;
vectorA = hull(indA2, :) - hull(indA, :);
indB2 = mod(indB, nV) + 1;
vectorB = hull(indB2, :) - hull(indB, :);
% Determine the angle between each caliper and the next adjacent edge
% in the polygon
angleA = vectorAngle(caliperA, vectorA);
angleB = vectorAngle(caliperB, vectorB);
% Determine the smallest of these angles
angleIncrement = min(angleA, angleB);
% Rotate the calipers by the smallest angle
caliperA = rotateVector(caliperA, angleIncrement);
caliperB = rotateVector(caliperB, angleIncrement);
rotatedAngle = rotatedAngle + angleIncrement;
% compute current width, and update opposite vertex
if angleA < angleB
line = createLine(hull(indA, :), hull(indA2, :));
width = distancePointLine(hull(indB, :), line);
indA = mod(indA, nV) + 1;
else
line = createLine(hull(indB, :), hull(indB2, :));
width = distancePointLine(hull(indA, :), line);
indB = mod(indB, nV) + 1;
end
% update minimum width and corresponding angle if needed
if width < minWidth
minWidth = width;
minAngle = rotatedAngle;
end
end
%% Compute box dimensions
% orientation of the main axis
theta = rad2deg(minAngle);
% pre-compute trigonometric functions
cot = cos(minAngle);
sit = sin(minAngle);
% elongation in direction of rectangle length
x = hull(:,1);
y = hull(:,2);
x2 = x * cot + y * sit;
y2 = - x * sit + y * cot;
% compute extension along main directions
xmin = min(x2); xmax = max(x2);
ymin = min(y2); ymax = max(y2);
% position of the center with respect to the centroid compute before
dl = (xmax + xmin)/2;
dw = (ymax + ymin)/2;
% change coordinate from rectangle to user-space
dx = dl * cot - dw * sit;
dy = dl * sit + dw * cot;
% coordinates of oriented box center
center = center + [dx dy];
% size of the rectangle
rectLength = xmax - xmin;
rectWidth = ymax - ymin;
% concatenate rectangle data
obox = [center rectLength rectWidth theta];
|