1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function line = createLine3d(varargin)
%CREATELINE3D Create a line with various inputs.
%
% Line is represented in a parametric form : [x0 y0 z0 dx dy dz]
% x = x0 + t*dx
% y = y0 + t*dy;
% z = z0 + t*dz;
%
%
% L = createLine3d(P1, P2);
% Returns the line going through the two given points P1 and P2.
%
% L = createLine3d(X0, Y0, Z0, DX, DY, DZ);
% Returns the line going through the point [x0, y0, z0], and with
% direction vector given by [DX DY DZ].
%
% L = createLine3d(P0, DX, DY, DZ);
% Returns the line going through point P0 given by [x0, y0, z0] and with
% direction vector given by [DX DY DZ].
%
% L = createLine3d(THETA, PHI);
% Create a line originated at (0,0) and with angles theta and phi.
%
% L = createLine3d(P0, THETA, PHI);
% Create a line with direction given by theta and phi, and which contains
% point P0.
%
%
% Note : in all cases, parameters can be vertical arrays of the same
% dimension. The result is then an array of lines, of dimensions [N*6].
%
% See also
% lines3d
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2005-02-17
% Copyright 2005-2023 INRA - TPV URPOI - BIA IMASTE
% NOTE : A 3d line can also be represented with a 1*7 array :
% [x0 y0 z0 dx dy dz t].
% whith 't' being one of the following :
% - t=0 : line is a singleton (x0,y0)
% - t=1 : line is an edge segment, between points (x0,y0) and (x0+dx,
% y0+dy).
% - t=Inf : line is a Ray, originated from (x0,y0) and going to infinity
% in the direction(dx,dy).
% - t=-Inf : line is a Ray, originated from (x0,y0) and going to infinity
% in the direction(-dx,-dy).
% - t=NaN : line is a real straight line, and contains all points
% verifying the above equation.
% This seems to be a convenient way to represent uniformly all kind of
% lines (including edges, rays, and even point).
%
% NOTE2 : Another form is the 1*8 array :
% [x0 y0 z0 dx dy dz t1 t2].
% with t1 and t2 giving first and last position of the edge on the
% supporting straight line, and with t2>t1.
if length(varargin)==1
error('Wrong number of arguments in ''createLine'' ');
elseif length(varargin)==2
% 2 input parameters. They can be :
% - 2 points, then 2 arrays of 1*2 double.
v1 = varargin{1};
v2 = varargin{2};
if size(v1, 2)==3
% first input parameter is first point, and second input is the
% second point.
line = [v1(:,1) v1(:,2) v1(:,3) v2(:,1)-v1(:,1) v2(:,2)-v1(:,2) v2(:,3)-v1(:,3)];
elseif size(v1, 2)==1
% first parameter is angle with the vertical
% second parameter is horizontal angle with Ox axis
theta = varargin{1};
phi = varargin{2};
sit = sin(theta);
p0 = zeros([size(theta, 1) 3]);
line = [p0 cos(phi)*sit sin(phi)*sit cos(theta)];
end
elseif length(varargin)==3
% 3 input parameters :
% first parameter is a point of the line
% second parameter is angle with the vertical
% third parameter is horizontal angle with Ox axis
p0 = varargin{1};
theta = varargin{2};
phi = varargin{3};
if size(p0, 2)~=3
error('first argument should be a 3D point');
end
sit = sin(theta);
line = [p0 cos(phi)*sit sin(phi)*sit cos(theta)];
elseif length(varargin)==4
% 4 input parameters :
p0 = varargin{1};
dx = varargin{2};
dy = varargin{3};
dz = varargin{4};
if size(p0, 2)~=3
error('first argument should be a 3D point');
end
line = [p0 dx dy dz];
elseif length(varargin)==5
% 5 input parameters :
% first parameter is distance of lin to origin
% second parameter is angle with the vertical
% third parameter is horizontal angle with Ox axis
x0 = varargin{1};
y0 = varargin{1};
z0 = varargin{1};
theta = varargin{2};
phi = varargin{3};
sit = sin(theta);
line = [x0 y0 z0 cos(phi)*sit sin(phi)*sit cos(theta)];
elseif length(varargin)==6
% 6 input parameters, given as separate arguments for x0, y0, z0 and
% dx, dy and dz
% (not very useful, but anyway...)
x0 = varargin{1};
y0 = varargin{2};
z0 = varargin{3};
dx = varargin{4};
dy = varargin{5};
dz = varargin{6};
line = [x0 y0 z0 dx dy dz];
end
|