1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function plane = createPlane(varargin)
%CREATEPLANE Create a plane in parametrized form.
%
% PLANE = createPlane(P1, P2, P3)
% creates a plane containing the 3 points
%
% PLANE = createPlane(PTS)
% The 3 points are packed into a single 3-by-3 array.
%
% PLANE = createPlane(P0, N);
% Creates a plane from a point P0 and a normal N to the plane. The
% parameter N is given either as a 3D vector (1-by-3 row vector), or as
% [THETA PHI], where THETA is the colatitute (angle with the vertical
% axis) and PHI is angle with Ox axis, counted counter-clockwise (both
% given in radians).
%
% PLANE = createPlane(P0, Dip, DipDir);
% Creates a plane from a point and from a dip and dip direction angles
% of the plane. Parameters Dip and DipDir angles are given as numbers.
% Dip : maximum inclination to the horizontal.
% DipDir : direction of the horizontal trace of the line of dip,
% measured clockwise from north.
%
% The created plane data has the following format:
% PLANE = [X0 Y0 Z0 DX1 DY1 DZ1 DX2 DY2 DZ2], with
% - (X0, Y0, Z0) is a point belonging to the plane
% - (DX1, DY1, DZ1) is a first direction vector
% - (DX2, DY2, DZ2) is a second direction vector
% The 2 direction vectors are normalized and orthogonal.
%
% See also
% planes3d, medianPlane
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2005-02-18
% Copyright 2005-2023 INRA - TPV URPOI - BIA IMASTE
if length(varargin) == 1
% If a single input is provided, it can be:
% * an array of three points belonging to the plane
% * a cell array -> one plane per array element is created
var = varargin{1};
if iscell(var)
plane = zeros([length(var) 9]);
for i = 1:length(var)
plane(i,:) = createPlane(var{i});
end
elseif size(var, 1) >= 3
% 3 points in a single array
p1 = var(1,:);
p2 = var(2,:);
p3 = var(3,:);
% create direction vectors
v1 = p2 - p1;
v2 = p3 - p1;
% create plane
plane = normalizePlane([p1 v1 v2]);
else
error ('MatGeom:createPlane', 'In case of single a.');
end
elseif length(varargin) == 2
% Two arguments -> correspond to plane origin and plane normal
% plane origin
p0 = varargin{1};
% second parameter is either a 3D vector or a 3D angle (2 params)
var = varargin{2};
if size(var, 2) == 2
% normal is given in spherical coordinates
n = sph2cart2([var ones(size(var, 1))]);
elseif size(var, 2) == 3
% normal is given by a 3D vector
n = normalizeVector3d(var);
else
error ('MatGeom:createPlane', 'Can not parse plane normal.');
end
% ensure same dimension for parameters
if size(p0, 1) == 1
p0 = repmat(p0, [size(n, 1) 1]);
end
if size(n, 1) == 1
n = repmat(n, [size(p0, 1) 1]);
end
% find a vector not colinear to the normal, in the direction of [1 0 0]
% first try with vector [0 0 1]
v0 = repmat([0 0 1], [size(p0, 1) 1]);
% if vectors are close to colinear, use vector [0 -1 0]
inds = vectorNorm3d(cross(n, v0, 2)) < 1e-12;
v0(inds, :) = repmat([0 -1 0], [sum(inds) 1]);
% create direction vectors
v1 = normalizeVector3d(cross(n, v0, 2));
v2 = -normalizeVector3d(cross(v1, n, 2));
% concatenate results in the array representing the plane
plane = [p0 v1 v2];
elseif length(varargin) == 3
% Three input arguments:
% * three points (as 1-by-3 or 1-by-N numeric arrays)
% * center, Dip and DipDir (?)
var1 = varargin{1};
var2 = varargin{2};
var3 = varargin{3};
if size(var1, 2) == 3 && size(var2, 2) == 3 && size(var3, 2) == 3
% input arguments are three points
p1 = var1;
p2 = var2;
p3 = var3;
% create direction vectors
v1 = p2 - p1;
v2 = p3 - p1;
plane = normalizePlane([p1 v1 v2]);
elseif size(var1, 2) == 3 && size(var2, 2) == 1 && size(var3, 2) == 1
p0 = var1;
n = [sin(var2)*sin(var3) sin(var2)*cos(var3) cos(var2)];
% find a vector not colinear to the normal
v0 = repmat([1 0 0], [size(p0, 1) 1]);
inds = vectorNorm3d(cross(n, v0, 2))<1e-14;
v0(inds, :) = repmat([0 1 0], [sum(inds) 1]);
% create direction vectors
v1 = normalizeVector3d(cross(n, v0, 2));
v2 = -normalizeVector3d(cross(v1, n, 2));
% concatenate result in the array representing the plane
plane = [p0 v1 v2];
else
error('MatGeom:createPlane', 'Wrong argument in "createPlane".');
end
else
error ('MatGeom:createPlane', 'Wrong number of input parameters.');
end
|