1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [dist, proj] = distancePointTriangle3d(point, triangle)
%DISTANCEPOINTTRIANGLE3D Minimum distance between a 3D point and a 3D triangle.
%
% DIST = distancePointTriangle3d(PT, TRI);
% Computes the minimum distance between the point PT and the triangle
% TRI. The Point PT is given as a row vector of three coordinates. The
% triangle TRI is given as a 3-by-3 array containing the coordinates of
% each vertex in a row of the array:
% TRI = [...
% X1 Y1 Z1;...
% X2 Y2 Z2;...
% X3 Y3 Z3];
%
% [DIST, PROJ] = distancePointTriangle3d(PT, TRI);
% Also returns the coordinates of the projeced point.
%
% Example
% tri = [1 0 0; 0 1 0;0 0 1];
% pt = [0 0 0];
% dist = distancePointTriangle3d(pt, tri)
% dist =
% 0.5774
%
% See also
% meshes3d, distancePointMesh, distancePointEdge3d, distancePointPlane
%
% Reference
% * David Eberly (1999), "Distance Between Point and Triangle in 3D"
% https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
% * see <a href="matlab:
% web('https://fr.mathworks.com/matlabcentral/fileexchange/22857-distance-between-a-point-and-a-triangle-in-3d')
% ">Distance between a point and a triangle in 3d</a>, by Gwendolyn Fischer.
% (same algorithm, but different order of input argument)
%
% * https://fr.mathworks.com/matlabcentral/fileexchange/22857-distance-between-a-point-and-a-triangle-in-3d
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2018-03-08, using Matlab 9.3.0.713579 (R2017b)
% Copyright 2018-2023 INRA - Cepia Software Platform
% triangle origin and vectors
p1 = triangle(1,:);
v12 = triangle(2,:) - p1;
v13 = triangle(3,:) - p1;
% identify coefficients of second order equation
a = dot(v12, v12, 2);
b = dot(v12, v13, 2);
c = dot(v13, v13, 2);
diffP = p1 - point;
d = dot(v12, diffP, 2);
e = dot(v13, diffP, 2);
% f = dot(diffP, diffP, 2);
% compute position of projected point in the plane of the triangle
det = a * c - b * b ;
s = b * e - c * d ;
t = b * d - a * e ;
% switch depending on the region where the projection occur
if s + t < det
if s < 0
if t < 0
% region 4
% The minimum distance must occur
% * on the line t = 0
% * on the line s = 0 with t >= 0
% * at the intersection of the two lines
if d < 0
% minimum on edge t = 0 with s > 0.
t = 0;
if a <= -d
s = 1;
else
s = -d / a;
end
else
% minimum on edge s = 0
s = 0;
if e >= 0
t = 0;
elseif c <= -e
t = 1;
else
t = -e / c;
end
end
else
% region 3
% The minimum distance must occur on the line s = 0
s = 0;
if e >= 0
t = 0;
else
if c <= -e
t = 1;
else
t = -e / c;
end
end
end
else
if t < 0
% region 5
% The minimum distance must occur on the line t = 0
t = 0;
if d >= 0
s = 0;
else
if a <= -d
s = 1;
else
s = -d / a;
end
end
else
% region 0
% the minimum distance occurs inside the triangle
s = s / det;
t = t / det;
end
end
else
if s < 0
% region 2
% The minimum distance must occur:
% * on the line s + t = 1
% * on the line s = 0 with t <= 1
% * or at the intersection of the two (s=0; t=1)
tmp0 = b + d;
tmp1 = c + e;
if tmp1 > tmp0
% minimum on edge s+t = 1, with s > 1
numer = tmp1 - tmp0;
denom = a - 2 * b + c;
if numer >= denom
s = 1;
else
s = numer / denom;
end
t = 1 - s;
else
% minimum on edge s = 0, with t <= 1
s = 0;
if tmp1 <= 0
t = 1;
elseif e >= 0
t = 0;
else
t = -e / c;
end
end
elseif t < 0
% region 6
% The minimum distance must occur
% * on the line s + t = 1
% * on the line t = 0, with s <= 1
% * at the intersection of the two lines
tmp0 = b + e;
tmp1 = a + d;
if tmp1 > tmp0
% minimum on edge s+t=1, with t > 0
numer = tmp1 - tmp0;
denom = a - 2 * b + c;
if numer > denom
t = 1;
else
t = numer / denom;
end
s = 1 - t;
else
% minimum on edge t = 0 with s <= 1
t = 0;
if tmp1 <= 0
s = 1;
elseif d >= 0
s = 0;
else
s = -d / a;
end
end
else
% region 1
% The minimum distance must occur on the line s + t = 1
numer = (c + e) - (b + d);
if numer <= 0
s = 0;
else
denom = a - 2 * b + c;
if numer >= denom
s = 1;
else
s = numer / denom;
end
end
t = 1 - s;
end
end
% compute coordinates of closest point on plane
proj = p1 + s * v12 + t * v13;
% distance between point and closest point on plane
dist = sqrt(sum((point - proj).^2));
|