1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = drawCircle3d(varargin)
%DRAWCIRCLE3D Draw a 3D circle.
%
% Possible calls for the function:
% drawCircle3d([XC YC ZC R THETA PHI])
% drawCircle3d([XC YC ZC R], [THETA PHI])
%
% where XC, YC, ZY are coordinates of circle center, R is the circle
% radius, PHI and THETA are 3D angles in degrees of the normal to the
% plane containing the circle:
% * THETA between 0 and 180 degrees, corresponding to the colatitude
% (angle with Oz axis).
% * PHI between 0 and 360 degrees corresponding to the longitude (angle
% with Ox axis)
%
% drawCircle3d([XC YC ZC R THETA PHI PSI])
% drawCircle3d([XC YC ZC R], [THETA PHI PSI])
% drawCircle3d([XC YC ZC R], THETA, PHI)
% drawCircle3d([XC YC ZC], R, THETA, PHI)
% drawCircle3d([XC YC ZC R], THETA, PHI, PSI)
% drawCircle3d([XC YC ZC], R, THETA, PHI, PSI)
% drawCircle3d(XC, YC, ZC, R, THETA, PHI)
% drawCircle3d(XC, YC, ZC, R, THETA, PHI, PSI)
% Are other possible syntaxes for this function.
%
% H = drawCircle3d(...)
% return handle on the created LINE object
%
% Example
% % display 3 mutually orthogonal 3D circles
% figure; hold on;
% drawCircle3d([10 20 30 50 0 0], 'LineWidth', 2, 'Color', 'b');
% drawCircle3d([10 20 30 50 90 0], 'LineWidth', 2, 'Color', 'r');
% drawCircle3d([10 20 30 50 90 90], 'LineWidth', 2, 'Color', 'g');
% axis equal;
% axis([-50 100 -50 100 -50 100]);
% view([-10 20])
%
% % Draw several circles at once
% center = [10 20 30];
% circ1 = [center 50 0 0];
% circ2 = [center 50 90 0];
% circ3 = [center 50 90 90];
% figure; hold on;
% drawCircle3d([circ1 ; circ2 ; circ3]);
% axis equal;
%
% See also
% circles3d, drawCircleArc3d, drawEllipse3d, drawSphere
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2005-02-17
% Copyright 2005-2023 INRA - CEPIA Nantes - MIAJ (Jouy-en-Josas)
% Possible calls for the function, with number of arguments :
% drawCircle3d([XC YC ZC R THETA PHI]) 1
% drawCircle3d([XC YC ZC R THETA PHI PSI]) 1
% drawCircle3d([XC YC ZC R], [THETA PHI]) 2
% drawCircle3d([XC YC ZC R], [THETA PHI PSI]) 2
% drawCircle3d([XC YC ZC R], THETA, PHI) 3
% drawCircle3d([XC YC ZC], R, THETA, PHI) 4
% drawCircle3d([XC YC ZC R], THETA, PHI, PSI) 4
% drawCircle3d([XC YC ZC], R, THETA, PHI, PSI) 5
% drawCircle3d(XC, YC, ZC, R, THETA, PHI) 6
% drawCircle3d(XC, YC, ZC, R, THETA, PHI, PSI) 7
% extract handle of axis to draw on
[hAx, varargin] = parseAxisHandle(varargin{:});
% extract drawing options
if verLessThan('matlab', '7.8')
ind = find(cellfun('isclass', varargin, 'char'), 1, 'first');
else
ind = find(cellfun(@ischar, varargin), 1, 'first');
end
options = {};
if ~isempty(ind)
options = varargin(ind:end);
varargin(ind:end) = [];
end
% Extract circle data
if length(varargin) == 1
% get center and radius
circle = varargin{1};
xc = circle(:,1);
yc = circle(:,2);
zc = circle(:,3);
r = circle(:,4);
% get colatitude of normal
if size(circle, 2) >= 5
theta = circle(:,5);
else
theta = zeros(size(circle, 1), 1);
end
% get azimut of normal
if size(circle, 2)>=6
phi = circle(:,6);
else
phi = zeros(size(circle, 1), 1);
end
% get roll
if size(circle, 2)==7
psi = circle(:,7);
else
psi = zeros(size(circle, 1), 1);
end
elseif length(varargin) == 2
% get center and radius
circle = varargin{1};
xc = circle(:,1);
yc = circle(:,2);
zc = circle(:,3);
r = circle(:,4);
% get angle of normal
angle = varargin{2};
theta = angle(:,1);
phi = angle(:,2);
% get roll
if size(angle, 2)==3
psi = angle(:,3);
else
psi = zeros(size(angle, 1), 1);
end
elseif length(varargin) == 3
% get center and radius
circle = varargin{1};
xc = circle(:,1);
yc = circle(:,2);
zc = circle(:,3);
r = circle(:,4);
% get angle of normal and roll
theta = varargin{2};
phi = varargin{3};
psi = zeros(size(phi, 1), 1);
elseif length(varargin) == 4
% get center and radius
circle = varargin{1};
xc = circle(:,1);
yc = circle(:,2);
zc = circle(:,3);
if size(circle, 2)==4
r = circle(:,4);
theta = varargin{2};
phi = varargin{3};
psi = varargin{4};
else
r = varargin{2};
theta = varargin{3};
phi = varargin{4};
psi = zeros(size(phi, 1), 1);
end
elseif length(varargin) == 5
% get center and radius
circle = varargin{1};
xc = circle(:,1);
yc = circle(:,2);
zc = circle(:,3);
r = varargin{2};
theta = varargin{3};
phi = varargin{4};
psi = varargin{5};
elseif length(varargin) == 6
xc = varargin{1};
yc = varargin{2};
zc = varargin{3};
r = varargin{4};
theta = varargin{5};
phi = varargin{6};
psi = zeros(size(phi, 1), 1);
elseif length(varargin) == 7
xc = varargin{1};
yc = varargin{2};
zc = varargin{3};
r = varargin{4};
theta = varargin{5};
phi = varargin{6};
psi = varargin{7};
else
error('drawCircle3d: please specify center and radius');
end
% circle parametrisation (by using N=60, some vertices are located at
% special angles like 45°, 30°...)
Nt = 60;
t = linspace(0, 2*pi, Nt+1);
nCircles = length(xc);
h = zeros(nCircles, 1);
% save hold state
holdState = ishold(hAx);
hold(hAx, 'on');
% iterate over circles to draw
for i = 1:nCircles
% compute position of circle points
x = r(i) * cos(t)';
y = r(i) * sin(t)';
z = zeros(length(t), 1);
circle0 = [x y z];
% compute transformation from local basis to world basis
trans = localToGlobal3d(xc(i), yc(i), zc(i), theta(i), phi(i), psi(i));
% compute points of transformed circle
circle = transformPoint3d(circle0, trans);
% draw the curve of circle points
h(i) = drawPolyline3d(hAx, circle, options{:});
end
% restore hold state
if ~holdState
hold(hAx, 'off');
end
if nargout > 0
varargout = {h};
end
|