1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = drawDome(varargin)
%DRAWDOME Draw a dome (half-sphere, semi-sphere) as a mesh.
%
% drawDome(DOME)
% Where DOME = [XC YC ZC R], draw the dome centered on the point with
% coordinates [XC YC ZC] and with radius R, using a quad mesh.
%
% drawDome(Dome, V)
% Where DOME = [XC YC ZC R] and V is a vector in the direction of the top
%
% drawDome(CENTER, R, V)
% Where CENTER = [XC YC ZC], specifies the center and the radius with two
% arguments and vector as third argument.
%
% drawDome(XC, YC, ZC, R, V)
% Specifiy dome center, radius and vector as five arguments.
%
% drawDome(..., NAME, VALUE);
% Specifies one or several options using parameter name-value pairs.
% Available options are usual drawing options, as well as:
% 'nPhi' the number of arcs used for drawing the meridians
% 'nTheta' the number of circles used for drawing the parallels
%
% H = drawDome(...)
% Return a handle to the graphical object created by the function.
%
% [X Y Z] = drawDome(...)
% Return the coordinates of the vertices used by the dome. In this
% case, the dome is not drawn.
%
% Example
% % Draw four domes with different centers
% figure(1); clf; hold on;
% drawDome([0 0 1 1], 'FaceColor', 'b', 'EdgeColor', 'k', 'LineStyle', ':');
% drawDome([0 1 0 1], [0 1 0]);
% drawDome([0 -1 0 0.5], [1 0 0]);
% drawDome([0 -5 4 10], 'FaceAlpha', 0.5, 'EdgeColor', 'r', 'LineStyle', '-');
% view([-30 20]); axis equal; l = light;
%
% % Draw dome with different settings
% figure(1); clf;
% drawDome([10 20 30 10], [0 0 1], 'linestyle', ':', 'facecolor', 'r');
% axis([0 50 0 50 0 50]); axis equal;
% l = light;
%
% % The same, but changes style using graphic handle
% figure(1); clf;
% h = drawDome([10 20 30 10], [1 0 0]);
% set(h, 'linestyle', ':');
% set(h, 'facecolor', 'r');
% axis([0 50 0 50 0 50]); axis equal;
% l = light;
%
% % Draw a dome with high resolution
% figure(1); clf;
% h = drawDome([10 20 30 10], 'nPhi', 360, 'nTheta', 180);
% l = light; view(3);
%
%
% See also
% drawSphere
% ------
% Author: Moritz Schappler
% E-mail: N/A
% Created: 2013-07-27
% Copyright 2013-2023
% extract handle of axis to draw on
[hAx, varargin] = parseAxisHandle(varargin{:});
% process input options: when a string is found, assumes this is the
% beginning of options
options = {'FaceColor', 'g', 'LineStyle', 'none'};
for i = 1:length(varargin)
if ischar(varargin{i})
if length(varargin) == 1
options = {'FaceColor', varargin{1}, 'LineStyle', 'none'};
else
options = [options(1:end) varargin(i:end)];
end
varargin = varargin(1:i-1);
break;
end
end
% Parse the input (try to extract center coordinates and radius)
if isempty(varargin)
% no input: assumes unit dome
xc = 0; yc = 0; zc = 0;
r = 1;
v = [0;0;1];
elseif length(varargin) == 1
% one argument: concatenates center and radius
dome = varargin{1};
xc = dome(:,1);
yc = dome(:,2);
zc = dome(:,3);
r = dome(:,4);
v = [0;0;1];
elseif length(varargin) == 2
% two arguments: concatenates center and radius with Rotation
dome = varargin{1};
xc = dome(:,1);
yc = dome(:,2);
zc = dome(:,3);
r = dome(:,4);
v = varargin{2};
elseif length(varargin) == 3
% three arguments, corresponding to center and radius and rotation
center = varargin{1};
xc = center(1);
yc = center(2);
zc = center(3);
r = varargin{2};
v = varargin{3};
elseif length(varargin) == 5
% five arguments, corresponding to XC, YX, ZC, R and V
xc = varargin{1};
yc = varargin{2};
zc = varargin{3};
r = varargin{4};
v = varargin{5};
else
error('drawDome: please specify center and radius');
end
% Rotation given by z-Axis. Calculate rotation matrix
v = v(:) / norm(v(:));
if all(abs(v(:)-[0;0;1]) < 1e-10)
RM = eye(3);
elseif all(abs(v(:) - [0;0;-1]) < 1e-10)
RM = [[1;0;0], [0; -1; 0], [0; 0; -1]];
else
% z-axis given by argument
ez = v(:);
% x-axis perpendicular
ex = cross(ez, [0; 0; 1]); ex = ex/norm(ex);
% y-axis to create right-handed coordinate system
ey = cross(ez, ex);
RM = [ex, ey, ez];
end
% number of meridians
nPhi = 32;
ind = find(strcmpi('nPhi', options(1:2:end)));
if ~isempty(ind)
ind = ind(1);
nPhi = options{2*ind};
options(2*ind-1:2*ind) = [];
end
% number of parallels
nTheta = 8;
ind = find(strcmpi('nTheta', options(1:2:end)));
if ~isempty(ind)
ind = ind(1);
nTheta = options{2*ind};
options(2*ind-1:2*ind) = [];
end
% compute spherical coordinates
theta = linspace(0, pi/2, nTheta+1);
phi = linspace(0, 2*pi, nPhi+1);
% convert to Cartesian coordinates and rotate
% Rotate the Dome
x = zeros(nPhi+1, nTheta+1);
y = x;
z = x;
sintheta = sin(theta);
dx = cos(phi')*sintheta*r;
dy = sin(phi')*sintheta*r;
dz = ones(length(phi),1)*cos(theta)*r;
for i = 1:nPhi+1
for j = 1:nTheta+1
dxyz = RM*[dx(i, j);dy(i, j);dz(i, j)];
x(i, j) = xc + dxyz(1);
y(i, j) = yc + dxyz(2);
z(i, j) = zc + dxyz(3);
end
end
% Process output
if nargout == 0
% no output: draw the dome
surf(hAx, x, y, z, options{:});
elseif nargout == 1
% one output: compute
varargout{1} = surf(hAx, x, y, z, options{:});
elseif nargout == 3
varargout{1} = x;
varargout{2} = y;
varargout{3} = z;
end
|