1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = drawEllipsoid(varargin)
%DRAWELLIPSOID Draw a 3D ellipsoid.
%
% drawEllipsoid(ELLI)
% Displays a 3D ellipsoid on current axis. ELLI is given by:
% [XC YC ZC A B C PHI THETA PSI],
% where (XC, YC, ZC) is the ellipsoid center, A, B and C are the half
% lengths of the ellipsoid main axes, and PHI THETA PSI are Euler angles
% representing ellipsoid orientation, in degrees.
%
% drawEllipsoid(..., 'drawEllipses', true)
% Also displays the main 3D ellipses corresponding to XY, XZ and YZ
% planes.
%
%
% Example
% figure; hold on;
% drawEllipsoid([10 20 30 50 30 10 5 10 0]);
% axis equal;
%
% figure; hold on;
% elli = [10 20 30 50 30 10 5 10 0];
% drawEllipsoid(elli, 'FaceColor', 'r', ...
% 'drawEllipses', true, 'EllipseColor', 'b', 'EllipseWidth', 3);
% axis equal;
%
% See also
% spheres, drawSphere, equivalentEllipsoid, ellipsoid, drawTorus,
% drawCuboid
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2011-03-12, using Matlab 7.9.0.529 (R2009b)
% Copyright 2011-2023 INRA - Cepia Software Platform
%% Default values
% number of meridians
nPhi = 32;
% number of parallels
nTheta = 16;
% settings for drawing ellipses
drawEllipses = false;
ellipseColor = 'k';
ellipseWidth = 1;
drawAxes = false;
axesColor = 'k';
axesWidth = 2;
%% Extract input arguments
% extract handle of axis to draw on
[hAx, varargin] = parseAxisHandle(varargin{:});
% retrieve parameters of ellipsoid
elli = varargin{1};
varargin(1) = [];
% default set of options for drawing meshes
options = {'FaceColor', 'g', 'linestyle', 'none'};
while length(varargin) > 1
switch lower(varargin{1})
case 'nphi'
nPhi = varargin{2};
case 'ntheta'
nTheta = varargin{2};
case 'drawellipses'
drawEllipses = varargin{2};
case 'ellipsecolor'
ellipseColor = varargin{2};
case 'ellipsewidth'
ellipseWidth = varargin{2};
case 'drawaxes'
drawAxes = varargin{2};
case 'axescolor'
axesColor = varargin{2};
case 'axeswidth'
axesWidth = varargin{2};
otherwise
% assumes this is drawing option
options = [options varargin(1:2)]; %#ok<AGROW>
end
varargin(1:2) = [];
end
%% Parse numerical inputs
% Extract ellipsoid parameters
xc = elli(:,1);
yc = elli(:,2);
zc = elli(:,3);
a = elli(:,4);
b = elli(:,5);
c = elli(:,6);
k = pi / 180;
ellPhi = elli(:,7) * k;
ellTheta = elli(:,8) * k;
ellPsi = elli(:,9) * k;
%% Coordinates computation
% convert unit basis to ellipsoid basis
sca = createScaling3d(a, b, c);
rotZ = createRotationOz(ellPhi);
rotY = createRotationOy(ellTheta);
rotX = createRotationOx(ellPsi);
tra = createTranslation3d([xc yc zc]);
% concatenate transforms
trans = tra * rotZ * rotY * rotX * sca;
%% parametrisation of ellipsoid
% spherical coordinates
theta = linspace(0, pi, nTheta+1);
phi = linspace(0, 2*pi, nPhi+1);
% convert to cartesian coordinates
sintheta = sin(theta);
x = cos(phi') * sintheta;
y = sin(phi') * sintheta;
z = ones(length(phi),1) * cos(theta);
% transform mesh vertices
[x, y, z] = transformPoint3d(x, y, z, trans);
%% parametrisation of ellipses
if drawEllipses
% parametrisation for ellipses
nVertices = 120;
t = linspace(0, 2*pi, nVertices+1);
% XY circle
xc1 = cos(t');
yc1 = sin(t');
zc1 = zeros(size(t'));
% XZ circle
xc2 = cos(t');
yc2 = zeros(size(t'));
zc2 = sin(t');
% YZ circle
xc3 = zeros(size(t'));
yc3 = cos(t');
zc3 = sin(t');
% compute transformed ellipses
[xc1, yc1, zc1] = transformPoint3d(xc1, yc1, zc1, trans);
[xc2, yc2, zc2] = transformPoint3d(xc2, yc2, zc2, trans);
[xc3, yc3, zc3] = transformPoint3d(xc3, yc3, zc3, trans);
end
%% parametrisation of main axis edges
if drawAxes
axesEndings = [-1 0 0; +1 0 0; 0 -1 0; 0 +1 0; 0 0 -1; 0 0 +1];
axesEndings = transformPoint3d(axesEndings, trans);
end
%% Drawing
ellipseOptions = {'color', ellipseColor, 'LineWidth', ellipseWidth};
axesOptions = {'color', axesColor, 'LineWidth', axesWidth};
% Process output
if nargout == 0
% no output: draw the ellipsoid
surf(x, y, z, options{:});
if drawEllipses
plot3(hAx, xc1, yc1, zc1, ellipseOptions{:});
plot3(hAx, xc2, yc2, zc2, ellipseOptions{:});
plot3(hAx, xc3, yc3, zc3, ellipseOptions{:});
end
if drawAxes
drawEdge3d(hAx, [axesEndings(1,:), axesEndings(2,:)], axesOptions{:});
drawEdge3d(hAx, [axesEndings(3,:), axesEndings(4,:)], axesOptions{:});
drawEdge3d(hAx, [axesEndings(5,:), axesEndings(6,:)], axesOptions{:});
end
elseif nargout == 1
% one output: draw the ellipsoid and return handle
varargout{1} = surf(x, y, z, options{:});
if drawEllipses
plot3(hAx, xc1, yc1, zc1, ellipseOptions{:});
plot3(hAx, xc2, yc2, zc2, ellipseOptions{:});
plot3(hAx, xc3, yc3, zc3, ellipseOptions{:});
end
elseif nargout == 3
% 3 outputs: return computed coordinates
varargout{1} = x;
varargout{2} = y;
varargout{3} = z;
if drawEllipses
plot3(hAx, xc1, yc1, zc1, ellipseOptions{:});
plot3(hAx, xc2, yc2, zc2, ellipseOptions{:});
plot3(hAx, xc3, yc3, zc3, ellipseOptions{:});
end
elseif nargout == 4 && drawEllipses
% Also returns handles to ellipses
varargout{1} = surf(hAx, x, y, z, options{:});
varargout{2} = plot3(hAx, xc1, yc1, zc1, ellipseOptions{:});
varargout{3} = plot3(hAx, xc2, yc2, zc2, ellipseOptions{:});
varargout{4} = plot3(hAx, xc3, yc3, zc3, ellipseOptions{:});
end
|